LLVM OpenMP* Runtime Library
kmp_affinity.cpp
1 /*
2  * kmp_affinity.cpp -- affinity management
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_str.h"
18 #include "kmp_wrapper_getpid.h"
19 #if KMP_USE_HIER_SCHED
20 #include "kmp_dispatch_hier.h"
21 #endif
22 #if KMP_USE_HWLOC
23 // Copied from hwloc
24 #define HWLOC_GROUP_KIND_INTEL_MODULE 102
25 #define HWLOC_GROUP_KIND_INTEL_TILE 103
26 #define HWLOC_GROUP_KIND_INTEL_DIE 104
27 #define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220
28 #endif
29 
30 // The machine topology
31 kmp_topology_t *__kmp_topology = nullptr;
32 // KMP_HW_SUBSET environment variable
33 kmp_hw_subset_t *__kmp_hw_subset = nullptr;
34 
35 // Store the real or imagined machine hierarchy here
36 static hierarchy_info machine_hierarchy;
37 
38 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
39 
40 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
41  kmp_uint32 depth;
42  // The test below is true if affinity is available, but set to "none". Need to
43  // init on first use of hierarchical barrier.
44  if (TCR_1(machine_hierarchy.uninitialized))
45  machine_hierarchy.init(nproc);
46 
47  // Adjust the hierarchy in case num threads exceeds original
48  if (nproc > machine_hierarchy.base_num_threads)
49  machine_hierarchy.resize(nproc);
50 
51  depth = machine_hierarchy.depth;
52  KMP_DEBUG_ASSERT(depth > 0);
53 
54  thr_bar->depth = depth;
55  __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1,
56  &(thr_bar->base_leaf_kids));
57  thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
58 }
59 
60 static int nCoresPerPkg, nPackages;
61 static int __kmp_nThreadsPerCore;
62 #ifndef KMP_DFLT_NTH_CORES
63 static int __kmp_ncores;
64 #endif
65 
66 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) {
67  switch (type) {
68  case KMP_HW_SOCKET:
69  return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket));
70  case KMP_HW_DIE:
71  return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die));
72  case KMP_HW_MODULE:
73  return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module));
74  case KMP_HW_TILE:
75  return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile));
76  case KMP_HW_NUMA:
77  return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain));
78  case KMP_HW_L3:
79  return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache));
80  case KMP_HW_L2:
81  return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache));
82  case KMP_HW_L1:
83  return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache));
84  case KMP_HW_LLC:
85  return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache));
86  case KMP_HW_CORE:
87  return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core));
88  case KMP_HW_THREAD:
89  return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread));
90  case KMP_HW_PROC_GROUP:
91  return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup));
92  }
93  return KMP_I18N_STR(Unknown);
94 }
95 
96 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) {
97  switch (type) {
98  case KMP_HW_SOCKET:
99  return ((plural) ? "sockets" : "socket");
100  case KMP_HW_DIE:
101  return ((plural) ? "dice" : "die");
102  case KMP_HW_MODULE:
103  return ((plural) ? "modules" : "module");
104  case KMP_HW_TILE:
105  return ((plural) ? "tiles" : "tile");
106  case KMP_HW_NUMA:
107  return ((plural) ? "numa_domains" : "numa_domain");
108  case KMP_HW_L3:
109  return ((plural) ? "l3_caches" : "l3_cache");
110  case KMP_HW_L2:
111  return ((plural) ? "l2_caches" : "l2_cache");
112  case KMP_HW_L1:
113  return ((plural) ? "l1_caches" : "l1_cache");
114  case KMP_HW_LLC:
115  return ((plural) ? "ll_caches" : "ll_cache");
116  case KMP_HW_CORE:
117  return ((plural) ? "cores" : "core");
118  case KMP_HW_THREAD:
119  return ((plural) ? "threads" : "thread");
120  case KMP_HW_PROC_GROUP:
121  return ((plural) ? "proc_groups" : "proc_group");
122  }
123  return ((plural) ? "unknowns" : "unknown");
124 }
125 
127 // kmp_hw_thread_t methods
128 int kmp_hw_thread_t::compare_ids(const void *a, const void *b) {
129  const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a;
130  const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b;
131  int depth = __kmp_topology->get_depth();
132  for (int level = 0; level < depth; ++level) {
133  if (ahwthread->ids[level] < bhwthread->ids[level])
134  return -1;
135  else if (ahwthread->ids[level] > bhwthread->ids[level])
136  return 1;
137  }
138  if (ahwthread->os_id < bhwthread->os_id)
139  return -1;
140  else if (ahwthread->os_id > bhwthread->os_id)
141  return 1;
142  return 0;
143 }
144 
145 #if KMP_AFFINITY_SUPPORTED
146 int kmp_hw_thread_t::compare_compact(const void *a, const void *b) {
147  int i;
148  const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a;
149  const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b;
150  int depth = __kmp_topology->get_depth();
151  KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0);
152  KMP_DEBUG_ASSERT(__kmp_affinity_compact <= depth);
153  for (i = 0; i < __kmp_affinity_compact; i++) {
154  int j = depth - i - 1;
155  if (aa->sub_ids[j] < bb->sub_ids[j])
156  return -1;
157  if (aa->sub_ids[j] > bb->sub_ids[j])
158  return 1;
159  }
160  for (; i < depth; i++) {
161  int j = i - __kmp_affinity_compact;
162  if (aa->sub_ids[j] < bb->sub_ids[j])
163  return -1;
164  if (aa->sub_ids[j] > bb->sub_ids[j])
165  return 1;
166  }
167  return 0;
168 }
169 #endif
170 
171 void kmp_hw_thread_t::print() const {
172  int depth = __kmp_topology->get_depth();
173  printf("%4d ", os_id);
174  for (int i = 0; i < depth; ++i) {
175  printf("%4d ", ids[i]);
176  }
177  printf("\n");
178 }
179 
181 // kmp_topology_t methods
182 
183 // Remove layers that don't add information to the topology.
184 // This is done by having the layer take on the id = UNKNOWN_ID (-1)
185 void kmp_topology_t::_remove_radix1_layers() {
186  int preference[KMP_HW_LAST];
187  int top_index1, top_index2;
188  // Set up preference associative array
189  preference[KMP_HW_PROC_GROUP] = 110;
190  preference[KMP_HW_SOCKET] = 100;
191  preference[KMP_HW_CORE] = 95;
192  preference[KMP_HW_THREAD] = 90;
193  preference[KMP_HW_NUMA] = 85;
194  preference[KMP_HW_DIE] = 80;
195  preference[KMP_HW_TILE] = 75;
196  preference[KMP_HW_MODULE] = 73;
197  preference[KMP_HW_L3] = 70;
198  preference[KMP_HW_L2] = 65;
199  preference[KMP_HW_L1] = 60;
200  preference[KMP_HW_LLC] = 5;
201  top_index1 = 0;
202  top_index2 = 1;
203  while (top_index1 < depth - 1 && top_index2 < depth) {
204  kmp_hw_t type1 = types[top_index1];
205  kmp_hw_t type2 = types[top_index2];
206  KMP_ASSERT_VALID_HW_TYPE(type1);
207  KMP_ASSERT_VALID_HW_TYPE(type2);
208  // Do not allow the three main topology levels (sockets, cores, threads) to
209  // be compacted down
210  if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE ||
211  type1 == KMP_HW_SOCKET) &&
212  (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE ||
213  type2 == KMP_HW_SOCKET)) {
214  top_index1 = top_index2++;
215  continue;
216  }
217  bool radix1 = true;
218  bool all_same = true;
219  int id1 = hw_threads[0].ids[top_index1];
220  int id2 = hw_threads[0].ids[top_index2];
221  int pref1 = preference[type1];
222  int pref2 = preference[type2];
223  for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) {
224  if (hw_threads[hwidx].ids[top_index1] == id1 &&
225  hw_threads[hwidx].ids[top_index2] != id2) {
226  radix1 = false;
227  break;
228  }
229  if (hw_threads[hwidx].ids[top_index2] != id2)
230  all_same = false;
231  id1 = hw_threads[hwidx].ids[top_index1];
232  id2 = hw_threads[hwidx].ids[top_index2];
233  }
234  if (radix1) {
235  // Select the layer to remove based on preference
236  kmp_hw_t remove_type, keep_type;
237  int remove_layer, remove_layer_ids;
238  if (pref1 > pref2) {
239  remove_type = type2;
240  remove_layer = remove_layer_ids = top_index2;
241  keep_type = type1;
242  } else {
243  remove_type = type1;
244  remove_layer = remove_layer_ids = top_index1;
245  keep_type = type2;
246  }
247  // If all the indexes for the second (deeper) layer are the same.
248  // e.g., all are zero, then make sure to keep the first layer's ids
249  if (all_same)
250  remove_layer_ids = top_index2;
251  // Remove radix one type by setting the equivalence, removing the id from
252  // the hw threads and removing the layer from types and depth
253  set_equivalent_type(remove_type, keep_type);
254  for (int idx = 0; idx < num_hw_threads; ++idx) {
255  kmp_hw_thread_t &hw_thread = hw_threads[idx];
256  for (int d = remove_layer_ids; d < depth - 1; ++d)
257  hw_thread.ids[d] = hw_thread.ids[d + 1];
258  }
259  for (int idx = remove_layer; idx < depth - 1; ++idx)
260  types[idx] = types[idx + 1];
261  depth--;
262  } else {
263  top_index1 = top_index2++;
264  }
265  }
266  KMP_ASSERT(depth > 0);
267 }
268 
269 void kmp_topology_t::_set_last_level_cache() {
270  if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN)
271  set_equivalent_type(KMP_HW_LLC, KMP_HW_L3);
272  else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
273  set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
274 #if KMP_MIC_SUPPORTED
275  else if (__kmp_mic_type == mic3) {
276  if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
277  set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
278  else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN)
279  set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE);
280  // L2/Tile wasn't detected so just say L1
281  else
282  set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
283  }
284 #endif
285  else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN)
286  set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
287  // Fallback is to set last level cache to socket or core
288  if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) {
289  if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN)
290  set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET);
291  else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN)
292  set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE);
293  }
294  KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN);
295 }
296 
297 // Gather the count of each topology layer and the ratio
298 void kmp_topology_t::_gather_enumeration_information() {
299  int previous_id[KMP_HW_LAST];
300  int max[KMP_HW_LAST];
301 
302  for (int i = 0; i < depth; ++i) {
303  previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
304  max[i] = 0;
305  count[i] = 0;
306  ratio[i] = 0;
307  }
308  for (int i = 0; i < num_hw_threads; ++i) {
309  kmp_hw_thread_t &hw_thread = hw_threads[i];
310  for (int layer = 0; layer < depth; ++layer) {
311  int id = hw_thread.ids[layer];
312  if (id != previous_id[layer]) {
313  // Add an additional increment to each count
314  for (int l = layer; l < depth; ++l)
315  count[l]++;
316  // Keep track of topology layer ratio statistics
317  max[layer]++;
318  for (int l = layer + 1; l < depth; ++l) {
319  if (max[l] > ratio[l])
320  ratio[l] = max[l];
321  max[l] = 1;
322  }
323  break;
324  }
325  }
326  for (int layer = 0; layer < depth; ++layer) {
327  previous_id[layer] = hw_thread.ids[layer];
328  }
329  }
330  for (int layer = 0; layer < depth; ++layer) {
331  if (max[layer] > ratio[layer])
332  ratio[layer] = max[layer];
333  }
334 }
335 
336 // Find out if the topology is uniform
337 void kmp_topology_t::_discover_uniformity() {
338  int num = 1;
339  for (int level = 0; level < depth; ++level)
340  num *= ratio[level];
341  flags.uniform = (num == count[depth - 1]);
342 }
343 
344 // Set all the sub_ids for each hardware thread
345 void kmp_topology_t::_set_sub_ids() {
346  int previous_id[KMP_HW_LAST];
347  int sub_id[KMP_HW_LAST];
348 
349  for (int i = 0; i < depth; ++i) {
350  previous_id[i] = -1;
351  sub_id[i] = -1;
352  }
353  for (int i = 0; i < num_hw_threads; ++i) {
354  kmp_hw_thread_t &hw_thread = hw_threads[i];
355  // Setup the sub_id
356  for (int j = 0; j < depth; ++j) {
357  if (hw_thread.ids[j] != previous_id[j]) {
358  sub_id[j]++;
359  for (int k = j + 1; k < depth; ++k) {
360  sub_id[k] = 0;
361  }
362  break;
363  }
364  }
365  // Set previous_id
366  for (int j = 0; j < depth; ++j) {
367  previous_id[j] = hw_thread.ids[j];
368  }
369  // Set the sub_ids field
370  for (int j = 0; j < depth; ++j) {
371  hw_thread.sub_ids[j] = sub_id[j];
372  }
373  }
374 }
375 
376 void kmp_topology_t::_set_globals() {
377  // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores
378  int core_level, thread_level, package_level;
379  package_level = get_level(KMP_HW_SOCKET);
380 #if KMP_GROUP_AFFINITY
381  if (package_level == -1)
382  package_level = get_level(KMP_HW_PROC_GROUP);
383 #endif
384  core_level = get_level(KMP_HW_CORE);
385  thread_level = get_level(KMP_HW_THREAD);
386 
387  KMP_ASSERT(core_level != -1);
388  KMP_ASSERT(thread_level != -1);
389 
390  __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level);
391  if (package_level != -1) {
392  nCoresPerPkg = calculate_ratio(core_level, package_level);
393  nPackages = get_count(package_level);
394  } else {
395  // assume one socket
396  nCoresPerPkg = get_count(core_level);
397  nPackages = 1;
398  }
399 #ifndef KMP_DFLT_NTH_CORES
400  __kmp_ncores = get_count(core_level);
401 #endif
402 }
403 
404 kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth,
405  const kmp_hw_t *types) {
406  kmp_topology_t *retval;
407  // Allocate all data in one large allocation
408  size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc +
409  sizeof(int) * ndepth * 3;
410  char *bytes = (char *)__kmp_allocate(size);
411  retval = (kmp_topology_t *)bytes;
412  if (nproc > 0) {
413  retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t));
414  } else {
415  retval->hw_threads = nullptr;
416  }
417  retval->num_hw_threads = nproc;
418  retval->depth = ndepth;
419  int *arr =
420  (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc);
421  retval->types = (kmp_hw_t *)arr;
422  retval->ratio = arr + ndepth;
423  retval->count = arr + 2 * ndepth;
424  KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; }
425  for (int i = 0; i < ndepth; ++i) {
426  retval->types[i] = types[i];
427  retval->equivalent[types[i]] = types[i];
428  }
429  return retval;
430 }
431 
432 void kmp_topology_t::deallocate(kmp_topology_t *topology) {
433  if (topology)
434  __kmp_free(topology);
435 }
436 
437 bool kmp_topology_t::check_ids() const {
438  // Assume ids have been sorted
439  if (num_hw_threads == 0)
440  return true;
441  for (int i = 1; i < num_hw_threads; ++i) {
442  kmp_hw_thread_t &current_thread = hw_threads[i];
443  kmp_hw_thread_t &previous_thread = hw_threads[i - 1];
444  bool unique = false;
445  for (int j = 0; j < depth; ++j) {
446  if (previous_thread.ids[j] != current_thread.ids[j]) {
447  unique = true;
448  break;
449  }
450  }
451  if (unique)
452  continue;
453  return false;
454  }
455  return true;
456 }
457 
458 void kmp_topology_t::dump() const {
459  printf("***********************\n");
460  printf("*** __kmp_topology: ***\n");
461  printf("***********************\n");
462  printf("* depth: %d\n", depth);
463 
464  printf("* types: ");
465  for (int i = 0; i < depth; ++i)
466  printf("%15s ", __kmp_hw_get_keyword(types[i]));
467  printf("\n");
468 
469  printf("* ratio: ");
470  for (int i = 0; i < depth; ++i) {
471  printf("%15d ", ratio[i]);
472  }
473  printf("\n");
474 
475  printf("* count: ");
476  for (int i = 0; i < depth; ++i) {
477  printf("%15d ", count[i]);
478  }
479  printf("\n");
480 
481  printf("* equivalent map:\n");
482  KMP_FOREACH_HW_TYPE(i) {
483  const char *key = __kmp_hw_get_keyword(i);
484  const char *value = __kmp_hw_get_keyword(equivalent[i]);
485  printf("%-15s -> %-15s\n", key, value);
486  }
487 
488  printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No"));
489 
490  printf("* num_hw_threads: %d\n", num_hw_threads);
491  printf("* hw_threads:\n");
492  for (int i = 0; i < num_hw_threads; ++i) {
493  hw_threads[i].print();
494  }
495  printf("***********************\n");
496 }
497 
498 void kmp_topology_t::print(const char *env_var) const {
499  kmp_str_buf_t buf;
500  int print_types_depth;
501  __kmp_str_buf_init(&buf);
502  kmp_hw_t print_types[KMP_HW_LAST + 2];
503 
504  // Num Available Threads
505  KMP_INFORM(AvailableOSProc, env_var, num_hw_threads);
506 
507  // Uniform or not
508  if (is_uniform()) {
509  KMP_INFORM(Uniform, env_var);
510  } else {
511  KMP_INFORM(NonUniform, env_var);
512  }
513 
514  // Equivalent types
515  KMP_FOREACH_HW_TYPE(type) {
516  kmp_hw_t eq_type = equivalent[type];
517  if (eq_type != KMP_HW_UNKNOWN && eq_type != type) {
518  KMP_INFORM(AffEqualTopologyTypes, env_var,
519  __kmp_hw_get_catalog_string(type),
520  __kmp_hw_get_catalog_string(eq_type));
521  }
522  }
523 
524  // Quick topology
525  KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST);
526  // Create a print types array that always guarantees printing
527  // the core and thread level
528  print_types_depth = 0;
529  for (int level = 0; level < depth; ++level)
530  print_types[print_types_depth++] = types[level];
531  if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) {
532  // Force in the core level for quick topology
533  if (print_types[print_types_depth - 1] == KMP_HW_THREAD) {
534  // Force core before thread e.g., 1 socket X 2 threads/socket
535  // becomes 1 socket X 1 core/socket X 2 threads/socket
536  print_types[print_types_depth - 1] = KMP_HW_CORE;
537  print_types[print_types_depth++] = KMP_HW_THREAD;
538  } else {
539  print_types[print_types_depth++] = KMP_HW_CORE;
540  }
541  }
542  // Always put threads at very end of quick topology
543  if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD)
544  print_types[print_types_depth++] = KMP_HW_THREAD;
545 
546  __kmp_str_buf_clear(&buf);
547  kmp_hw_t numerator_type;
548  kmp_hw_t denominator_type = KMP_HW_UNKNOWN;
549  int core_level = get_level(KMP_HW_CORE);
550  int ncores = get_count(core_level);
551 
552  for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) {
553  int c;
554  bool plural;
555  numerator_type = print_types[plevel];
556  KMP_ASSERT_VALID_HW_TYPE(numerator_type);
557  if (equivalent[numerator_type] != numerator_type)
558  c = 1;
559  else
560  c = get_ratio(level++);
561  plural = (c > 1);
562  if (plevel == 0) {
563  __kmp_str_buf_print(&buf, "%d %s", c,
564  __kmp_hw_get_catalog_string(numerator_type, plural));
565  } else {
566  __kmp_str_buf_print(&buf, " x %d %s/%s", c,
567  __kmp_hw_get_catalog_string(numerator_type, plural),
568  __kmp_hw_get_catalog_string(denominator_type));
569  }
570  denominator_type = numerator_type;
571  }
572  KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores);
573 
574  if (num_hw_threads <= 0) {
575  __kmp_str_buf_free(&buf);
576  return;
577  }
578 
579  // Full OS proc to hardware thread map
580  KMP_INFORM(OSProcToPhysicalThreadMap, env_var);
581  for (int i = 0; i < num_hw_threads; i++) {
582  __kmp_str_buf_clear(&buf);
583  for (int level = 0; level < depth; ++level) {
584  kmp_hw_t type = types[level];
585  __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type));
586  __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]);
587  }
588  KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str);
589  }
590 
591  __kmp_str_buf_free(&buf);
592 }
593 
594 void kmp_topology_t::canonicalize() {
595  _remove_radix1_layers();
596  _gather_enumeration_information();
597  _discover_uniformity();
598  _set_sub_ids();
599  _set_globals();
600  _set_last_level_cache();
601 
602 #if KMP_MIC_SUPPORTED
603  // Manually Add L2 = Tile equivalence
604  if (__kmp_mic_type == mic3) {
605  if (get_level(KMP_HW_L2) != -1)
606  set_equivalent_type(KMP_HW_TILE, KMP_HW_L2);
607  else if (get_level(KMP_HW_TILE) != -1)
608  set_equivalent_type(KMP_HW_L2, KMP_HW_TILE);
609  }
610 #endif
611 
612  // Perform post canonicalization checking
613  KMP_ASSERT(depth > 0);
614  for (int level = 0; level < depth; ++level) {
615  // All counts, ratios, and types must be valid
616  KMP_ASSERT(count[level] > 0 && ratio[level] > 0);
617  KMP_ASSERT_VALID_HW_TYPE(types[level]);
618  // Detected types must point to themselves
619  KMP_ASSERT(equivalent[types[level]] == types[level]);
620  }
621 
622 #if KMP_AFFINITY_SUPPORTED
623  // Set the number of affinity granularity levels
624  if (__kmp_affinity_gran_levels < 0) {
625  kmp_hw_t gran_type = get_equivalent_type(__kmp_affinity_gran);
626  // Check if user's granularity request is valid
627  if (gran_type == KMP_HW_UNKNOWN) {
628  // First try core, then thread, then package
629  kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET};
630  for (auto g : gran_types) {
631  if (__kmp_topology->get_equivalent_type(g) != KMP_HW_UNKNOWN) {
632  gran_type = g;
633  break;
634  }
635  }
636  KMP_ASSERT(gran_type != KMP_HW_UNKNOWN);
637  // Warn user what granularity setting will be used instead
638  KMP_WARNING(AffGranularityBad, "KMP_AFFINITY",
639  __kmp_hw_get_catalog_string(__kmp_affinity_gran),
640  __kmp_hw_get_catalog_string(gran_type));
641  __kmp_affinity_gran = gran_type;
642  }
643  __kmp_affinity_gran_levels = 0;
644  for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i)
645  __kmp_affinity_gran_levels++;
646  }
647 #endif // KMP_AFFINITY_SUPPORTED
648 }
649 
650 // Canonicalize an explicit packages X cores/pkg X threads/core topology
651 void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg,
652  int nthreads_per_core, int ncores) {
653  int ndepth = 3;
654  depth = ndepth;
655  KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; }
656  for (int level = 0; level < depth; ++level) {
657  count[level] = 0;
658  ratio[level] = 0;
659  }
660  count[0] = npackages;
661  count[1] = ncores;
662  count[2] = __kmp_xproc;
663  ratio[0] = npackages;
664  ratio[1] = ncores_per_pkg;
665  ratio[2] = nthreads_per_core;
666  equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET;
667  equivalent[KMP_HW_CORE] = KMP_HW_CORE;
668  equivalent[KMP_HW_THREAD] = KMP_HW_THREAD;
669  types[0] = KMP_HW_SOCKET;
670  types[1] = KMP_HW_CORE;
671  types[2] = KMP_HW_THREAD;
672  //__kmp_avail_proc = __kmp_xproc;
673  _discover_uniformity();
674 }
675 
676 // Apply the KMP_HW_SUBSET envirable to the topology
677 // Returns true if KMP_HW_SUBSET filtered any processors
678 // otherwise, returns false
679 bool kmp_topology_t::filter_hw_subset() {
680  // If KMP_HW_SUBSET wasn't requested, then do nothing.
681  if (!__kmp_hw_subset)
682  return false;
683 
684  // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology
685  int hw_subset_depth = __kmp_hw_subset->get_depth();
686  kmp_hw_t specified[KMP_HW_LAST];
687  KMP_ASSERT(hw_subset_depth > 0);
688  KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; }
689  for (int i = 0; i < hw_subset_depth; ++i) {
690  int max_count;
691  int num = __kmp_hw_subset->at(i).num;
692  int offset = __kmp_hw_subset->at(i).offset;
693  kmp_hw_t type = __kmp_hw_subset->at(i).type;
694  kmp_hw_t equivalent_type = equivalent[type];
695  int level = get_level(type);
696 
697  // Check to see if current layer is in detected machine topology
698  if (equivalent_type != KMP_HW_UNKNOWN) {
699  __kmp_hw_subset->at(i).type = equivalent_type;
700  } else {
701  KMP_WARNING(AffHWSubsetNotExistGeneric,
702  __kmp_hw_get_catalog_string(type));
703  return false;
704  }
705 
706  // Check to see if current layer has already been specified
707  // either directly or through an equivalent type
708  if (specified[equivalent_type] != KMP_HW_UNKNOWN) {
709  KMP_WARNING(AffHWSubsetEqvLayers, __kmp_hw_get_catalog_string(type),
710  __kmp_hw_get_catalog_string(specified[equivalent_type]));
711  return false;
712  }
713  specified[equivalent_type] = type;
714 
715  // Check to see if layers are in order
716  if (i + 1 < hw_subset_depth) {
717  kmp_hw_t next_type = get_equivalent_type(__kmp_hw_subset->at(i + 1).type);
718  if (next_type == KMP_HW_UNKNOWN) {
719  KMP_WARNING(
720  AffHWSubsetNotExistGeneric,
721  __kmp_hw_get_catalog_string(__kmp_hw_subset->at(i + 1).type));
722  return false;
723  }
724  int next_topology_level = get_level(next_type);
725  if (level > next_topology_level) {
726  KMP_WARNING(AffHWSubsetOutOfOrder, __kmp_hw_get_catalog_string(type),
727  __kmp_hw_get_catalog_string(next_type));
728  return false;
729  }
730  }
731 
732  // Check to see if each layer's num & offset parameters are valid
733  max_count = get_ratio(level);
734  if (max_count < 0 || num + offset > max_count) {
735  bool plural = (num > 1);
736  KMP_WARNING(AffHWSubsetManyGeneric,
737  __kmp_hw_get_catalog_string(type, plural));
738  return false;
739  }
740  }
741 
742  // Apply the filtered hardware subset
743  int new_index = 0;
744  for (int i = 0; i < num_hw_threads; ++i) {
745  kmp_hw_thread_t &hw_thread = hw_threads[i];
746  // Check to see if this hardware thread should be filtered
747  bool should_be_filtered = false;
748  for (int level = 0, hw_subset_index = 0;
749  level < depth && hw_subset_index < hw_subset_depth; ++level) {
750  kmp_hw_t topology_type = types[level];
751  auto hw_subset_item = __kmp_hw_subset->at(hw_subset_index);
752  kmp_hw_t hw_subset_type = hw_subset_item.type;
753  if (topology_type != hw_subset_type)
754  continue;
755  int num = hw_subset_item.num;
756  int offset = hw_subset_item.offset;
757  hw_subset_index++;
758  if (hw_thread.sub_ids[level] < offset ||
759  hw_thread.sub_ids[level] >= offset + num) {
760  should_be_filtered = true;
761  break;
762  }
763  }
764  if (!should_be_filtered) {
765  if (i != new_index)
766  hw_threads[new_index] = hw_thread;
767  new_index++;
768  } else {
769 #if KMP_AFFINITY_SUPPORTED
770  KMP_CPU_CLR(hw_thread.os_id, __kmp_affin_fullMask);
771 #endif
772  __kmp_avail_proc--;
773  }
774  }
775  KMP_DEBUG_ASSERT(new_index <= num_hw_threads);
776  num_hw_threads = new_index;
777 
778  // Post hardware subset canonicalization
779  _gather_enumeration_information();
780  _discover_uniformity();
781  _set_globals();
782  _set_last_level_cache();
783  return true;
784 }
785 
786 bool kmp_topology_t::is_close(int hwt1, int hwt2, int hw_level) const {
787  if (hw_level >= depth)
788  return true;
789  bool retval = true;
790  const kmp_hw_thread_t &t1 = hw_threads[hwt1];
791  const kmp_hw_thread_t &t2 = hw_threads[hwt2];
792  for (int i = 0; i < (depth - hw_level); ++i) {
793  if (t1.ids[i] != t2.ids[i])
794  return false;
795  }
796  return retval;
797 }
798 
800 
801 #if KMP_AFFINITY_SUPPORTED
802 class kmp_affinity_raii_t {
803  kmp_affin_mask_t *mask;
804  bool restored;
805 
806 public:
807  kmp_affinity_raii_t() : restored(false) {
808  KMP_CPU_ALLOC(mask);
809  KMP_ASSERT(mask != NULL);
810  __kmp_get_system_affinity(mask, TRUE);
811  }
812  void restore() {
813  __kmp_set_system_affinity(mask, TRUE);
814  KMP_CPU_FREE(mask);
815  restored = true;
816  }
817  ~kmp_affinity_raii_t() {
818  if (!restored) {
819  __kmp_set_system_affinity(mask, TRUE);
820  KMP_CPU_FREE(mask);
821  }
822  }
823 };
824 
825 bool KMPAffinity::picked_api = false;
826 
827 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
828 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
829 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
830 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
831 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
832 void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
833 
834 void KMPAffinity::pick_api() {
835  KMPAffinity *affinity_dispatch;
836  if (picked_api)
837  return;
838 #if KMP_USE_HWLOC
839  // Only use Hwloc if affinity isn't explicitly disabled and
840  // user requests Hwloc topology method
841  if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
842  __kmp_affinity_type != affinity_disabled) {
843  affinity_dispatch = new KMPHwlocAffinity();
844  } else
845 #endif
846  {
847  affinity_dispatch = new KMPNativeAffinity();
848  }
849  __kmp_affinity_dispatch = affinity_dispatch;
850  picked_api = true;
851 }
852 
853 void KMPAffinity::destroy_api() {
854  if (__kmp_affinity_dispatch != NULL) {
855  delete __kmp_affinity_dispatch;
856  __kmp_affinity_dispatch = NULL;
857  picked_api = false;
858  }
859 }
860 
861 #define KMP_ADVANCE_SCAN(scan) \
862  while (*scan != '\0') { \
863  scan++; \
864  }
865 
866 // Print the affinity mask to the character array in a pretty format.
867 // The format is a comma separated list of non-negative integers or integer
868 // ranges: e.g., 1,2,3-5,7,9-15
869 // The format can also be the string "{<empty>}" if no bits are set in mask
870 char *__kmp_affinity_print_mask(char *buf, int buf_len,
871  kmp_affin_mask_t *mask) {
872  int start = 0, finish = 0, previous = 0;
873  bool first_range;
874  KMP_ASSERT(buf);
875  KMP_ASSERT(buf_len >= 40);
876  KMP_ASSERT(mask);
877  char *scan = buf;
878  char *end = buf + buf_len - 1;
879 
880  // Check for empty set.
881  if (mask->begin() == mask->end()) {
882  KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
883  KMP_ADVANCE_SCAN(scan);
884  KMP_ASSERT(scan <= end);
885  return buf;
886  }
887 
888  first_range = true;
889  start = mask->begin();
890  while (1) {
891  // Find next range
892  // [start, previous] is inclusive range of contiguous bits in mask
893  for (finish = mask->next(start), previous = start;
894  finish == previous + 1 && finish != mask->end();
895  finish = mask->next(finish)) {
896  previous = finish;
897  }
898 
899  // The first range does not need a comma printed before it, but the rest
900  // of the ranges do need a comma beforehand
901  if (!first_range) {
902  KMP_SNPRINTF(scan, end - scan + 1, "%s", ",");
903  KMP_ADVANCE_SCAN(scan);
904  } else {
905  first_range = false;
906  }
907  // Range with three or more contiguous bits in the affinity mask
908  if (previous - start > 1) {
909  KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous);
910  } else {
911  // Range with one or two contiguous bits in the affinity mask
912  KMP_SNPRINTF(scan, end - scan + 1, "%u", start);
913  KMP_ADVANCE_SCAN(scan);
914  if (previous - start > 0) {
915  KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous);
916  }
917  }
918  KMP_ADVANCE_SCAN(scan);
919  // Start over with new start point
920  start = finish;
921  if (start == mask->end())
922  break;
923  // Check for overflow
924  if (end - scan < 2)
925  break;
926  }
927 
928  // Check for overflow
929  KMP_ASSERT(scan <= end);
930  return buf;
931 }
932 #undef KMP_ADVANCE_SCAN
933 
934 // Print the affinity mask to the string buffer object in a pretty format
935 // The format is a comma separated list of non-negative integers or integer
936 // ranges: e.g., 1,2,3-5,7,9-15
937 // The format can also be the string "{<empty>}" if no bits are set in mask
938 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
939  kmp_affin_mask_t *mask) {
940  int start = 0, finish = 0, previous = 0;
941  bool first_range;
942  KMP_ASSERT(buf);
943  KMP_ASSERT(mask);
944 
945  __kmp_str_buf_clear(buf);
946 
947  // Check for empty set.
948  if (mask->begin() == mask->end()) {
949  __kmp_str_buf_print(buf, "%s", "{<empty>}");
950  return buf;
951  }
952 
953  first_range = true;
954  start = mask->begin();
955  while (1) {
956  // Find next range
957  // [start, previous] is inclusive range of contiguous bits in mask
958  for (finish = mask->next(start), previous = start;
959  finish == previous + 1 && finish != mask->end();
960  finish = mask->next(finish)) {
961  previous = finish;
962  }
963 
964  // The first range does not need a comma printed before it, but the rest
965  // of the ranges do need a comma beforehand
966  if (!first_range) {
967  __kmp_str_buf_print(buf, "%s", ",");
968  } else {
969  first_range = false;
970  }
971  // Range with three or more contiguous bits in the affinity mask
972  if (previous - start > 1) {
973  __kmp_str_buf_print(buf, "%u-%u", start, previous);
974  } else {
975  // Range with one or two contiguous bits in the affinity mask
976  __kmp_str_buf_print(buf, "%u", start);
977  if (previous - start > 0) {
978  __kmp_str_buf_print(buf, ",%u", previous);
979  }
980  }
981  // Start over with new start point
982  start = finish;
983  if (start == mask->end())
984  break;
985  }
986  return buf;
987 }
988 
989 void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
990  KMP_CPU_ZERO(mask);
991 
992 #if KMP_GROUP_AFFINITY
993 
994  if (__kmp_num_proc_groups > 1) {
995  int group;
996  KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
997  for (group = 0; group < __kmp_num_proc_groups; group++) {
998  int i;
999  int num = __kmp_GetActiveProcessorCount(group);
1000  for (i = 0; i < num; i++) {
1001  KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
1002  }
1003  }
1004  } else
1005 
1006 #endif /* KMP_GROUP_AFFINITY */
1007 
1008  {
1009  int proc;
1010  for (proc = 0; proc < __kmp_xproc; proc++) {
1011  KMP_CPU_SET(proc, mask);
1012  }
1013  }
1014 }
1015 
1016 // All of the __kmp_affinity_create_*_map() routines should allocate the
1017 // internal topology object and set the layer ids for it. Each routine
1018 // returns a boolean on whether it was successful at doing so.
1019 kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
1020 
1021 #if KMP_USE_HWLOC
1022 static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) {
1023 #if HWLOC_API_VERSION >= 0x00020000
1024  return hwloc_obj_type_is_cache(obj->type);
1025 #else
1026  return obj->type == HWLOC_OBJ_CACHE;
1027 #endif
1028 }
1029 
1030 // Returns KMP_HW_* type derived from HWLOC_* type
1031 static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) {
1032 
1033  if (__kmp_hwloc_is_cache_type(obj)) {
1034  if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION)
1035  return KMP_HW_UNKNOWN;
1036  switch (obj->attr->cache.depth) {
1037  case 1:
1038  return KMP_HW_L1;
1039  case 2:
1040 #if KMP_MIC_SUPPORTED
1041  if (__kmp_mic_type == mic3) {
1042  return KMP_HW_TILE;
1043  }
1044 #endif
1045  return KMP_HW_L2;
1046  case 3:
1047  return KMP_HW_L3;
1048  }
1049  return KMP_HW_UNKNOWN;
1050  }
1051 
1052  switch (obj->type) {
1053  case HWLOC_OBJ_PACKAGE:
1054  return KMP_HW_SOCKET;
1055  case HWLOC_OBJ_NUMANODE:
1056  return KMP_HW_NUMA;
1057  case HWLOC_OBJ_CORE:
1058  return KMP_HW_CORE;
1059  case HWLOC_OBJ_PU:
1060  return KMP_HW_THREAD;
1061  case HWLOC_OBJ_GROUP:
1062  if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE)
1063  return KMP_HW_DIE;
1064  else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE)
1065  return KMP_HW_TILE;
1066  else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE)
1067  return KMP_HW_MODULE;
1068  else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP)
1069  return KMP_HW_PROC_GROUP;
1070  return KMP_HW_UNKNOWN;
1071 #if HWLOC_API_VERSION >= 0x00020100
1072  case HWLOC_OBJ_DIE:
1073  return KMP_HW_DIE;
1074 #endif
1075  }
1076  return KMP_HW_UNKNOWN;
1077 }
1078 
1079 // Returns the number of objects of type 'type' below 'obj' within the topology
1080 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
1081 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
1082 // object.
1083 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
1084  hwloc_obj_type_t type) {
1085  int retval = 0;
1086  hwloc_obj_t first;
1087  for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
1088  obj->logical_index, type, 0);
1089  first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology,
1090  obj->type, first) == obj;
1091  first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
1092  first)) {
1093  ++retval;
1094  }
1095  return retval;
1096 }
1097 
1098 // This gets the sub_id for a lower object under a higher object in the
1099 // topology tree
1100 static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher,
1101  hwloc_obj_t lower) {
1102  hwloc_obj_t obj;
1103  hwloc_obj_type_t ltype = lower->type;
1104  int lindex = lower->logical_index - 1;
1105  int sub_id = 0;
1106  // Get the previous lower object
1107  obj = hwloc_get_obj_by_type(t, ltype, lindex);
1108  while (obj && lindex >= 0 &&
1109  hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) {
1110  if (obj->userdata) {
1111  sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata));
1112  break;
1113  }
1114  sub_id++;
1115  lindex--;
1116  obj = hwloc_get_obj_by_type(t, ltype, lindex);
1117  }
1118  // store sub_id + 1 so that 0 is differed from NULL
1119  lower->userdata = RCAST(void *, sub_id + 1);
1120  return sub_id;
1121 }
1122 
1123 static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) {
1124  kmp_hw_t type;
1125  int hw_thread_index, sub_id;
1126  int depth;
1127  hwloc_obj_t pu, obj, root, prev;
1128  kmp_hw_t types[KMP_HW_LAST];
1129  hwloc_obj_type_t hwloc_types[KMP_HW_LAST];
1130 
1131  hwloc_topology_t tp = __kmp_hwloc_topology;
1132  *msg_id = kmp_i18n_null;
1133  if (__kmp_affinity_verbose) {
1134  KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
1135  }
1136 
1137  if (!KMP_AFFINITY_CAPABLE()) {
1138  // Hack to try and infer the machine topology using only the data
1139  // available from hwloc on the current thread, and __kmp_xproc.
1140  KMP_ASSERT(__kmp_affinity_type == affinity_none);
1141  // hwloc only guarantees existance of PU object, so check PACKAGE and CORE
1142  hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0);
1143  if (o != NULL)
1144  nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE);
1145  else
1146  nCoresPerPkg = 1; // no PACKAGE found
1147  o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0);
1148  if (o != NULL)
1149  __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU);
1150  else
1151  __kmp_nThreadsPerCore = 1; // no CORE found
1152  __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1153  if (nCoresPerPkg == 0)
1154  nCoresPerPkg = 1; // to prevent possible division by 0
1155  nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1156  return true;
1157  }
1158 
1159  root = hwloc_get_root_obj(tp);
1160 
1161  // Figure out the depth and types in the topology
1162  depth = 0;
1163  pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin());
1164  KMP_ASSERT(pu);
1165  obj = pu;
1166  types[depth] = KMP_HW_THREAD;
1167  hwloc_types[depth] = obj->type;
1168  depth++;
1169  while (obj != root && obj != NULL) {
1170  obj = obj->parent;
1171 #if HWLOC_API_VERSION >= 0x00020000
1172  if (obj->memory_arity) {
1173  hwloc_obj_t memory;
1174  for (memory = obj->memory_first_child; memory;
1175  memory = hwloc_get_next_child(tp, obj, memory)) {
1176  if (memory->type == HWLOC_OBJ_NUMANODE)
1177  break;
1178  }
1179  if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1180  types[depth] = KMP_HW_NUMA;
1181  hwloc_types[depth] = memory->type;
1182  depth++;
1183  }
1184  }
1185 #endif
1186  type = __kmp_hwloc_type_2_topology_type(obj);
1187  if (type != KMP_HW_UNKNOWN) {
1188  types[depth] = type;
1189  hwloc_types[depth] = obj->type;
1190  depth++;
1191  }
1192  }
1193  KMP_ASSERT(depth > 0);
1194 
1195  // Get the order for the types correct
1196  for (int i = 0, j = depth - 1; i < j; ++i, --j) {
1197  hwloc_obj_type_t hwloc_temp = hwloc_types[i];
1198  kmp_hw_t temp = types[i];
1199  types[i] = types[j];
1200  types[j] = temp;
1201  hwloc_types[i] = hwloc_types[j];
1202  hwloc_types[j] = hwloc_temp;
1203  }
1204 
1205  // Allocate the data structure to be returned.
1206  __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1207 
1208  hw_thread_index = 0;
1209  pu = NULL;
1210  while (pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu)) {
1211  int index = depth - 1;
1212  bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask);
1213  kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
1214  if (included) {
1215  hw_thread.clear();
1216  hw_thread.ids[index] = pu->logical_index;
1217  hw_thread.os_id = pu->os_index;
1218  index--;
1219  }
1220  obj = pu;
1221  prev = obj;
1222  while (obj != root && obj != NULL) {
1223  obj = obj->parent;
1224 #if HWLOC_API_VERSION >= 0x00020000
1225  // NUMA Nodes are handled differently since they are not within the
1226  // parent/child structure anymore. They are separate children
1227  // of obj (memory_first_child points to first memory child)
1228  if (obj->memory_arity) {
1229  hwloc_obj_t memory;
1230  for (memory = obj->memory_first_child; memory;
1231  memory = hwloc_get_next_child(tp, obj, memory)) {
1232  if (memory->type == HWLOC_OBJ_NUMANODE)
1233  break;
1234  }
1235  if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1236  sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev);
1237  if (included) {
1238  hw_thread.ids[index] = memory->logical_index;
1239  hw_thread.ids[index + 1] = sub_id;
1240  index--;
1241  }
1242  prev = memory;
1243  }
1244  prev = obj;
1245  }
1246 #endif
1247  type = __kmp_hwloc_type_2_topology_type(obj);
1248  if (type != KMP_HW_UNKNOWN) {
1249  sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev);
1250  if (included) {
1251  hw_thread.ids[index] = obj->logical_index;
1252  hw_thread.ids[index + 1] = sub_id;
1253  index--;
1254  }
1255  prev = obj;
1256  }
1257  }
1258  if (included)
1259  hw_thread_index++;
1260  }
1261  __kmp_topology->sort_ids();
1262  return true;
1263 }
1264 #endif // KMP_USE_HWLOC
1265 
1266 // If we don't know how to retrieve the machine's processor topology, or
1267 // encounter an error in doing so, this routine is called to form a "flat"
1268 // mapping of os thread id's <-> processor id's.
1269 static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) {
1270  *msg_id = kmp_i18n_null;
1271  int depth = 3;
1272  kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD};
1273 
1274  if (__kmp_affinity_verbose) {
1275  KMP_INFORM(UsingFlatOS, "KMP_AFFINITY");
1276  }
1277 
1278  // Even if __kmp_affinity_type == affinity_none, this routine might still
1279  // called to set __kmp_ncores, as well as
1280  // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1281  if (!KMP_AFFINITY_CAPABLE()) {
1282  KMP_ASSERT(__kmp_affinity_type == affinity_none);
1283  __kmp_ncores = nPackages = __kmp_xproc;
1284  __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1285  return true;
1286  }
1287 
1288  // When affinity is off, this routine will still be called to set
1289  // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1290  // Make sure all these vars are set correctly, and return now if affinity is
1291  // not enabled.
1292  __kmp_ncores = nPackages = __kmp_avail_proc;
1293  __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1294 
1295  // Construct the data structure to be returned.
1296  __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1297  int avail_ct = 0;
1298  int i;
1299  KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
1300  // Skip this proc if it is not included in the machine model.
1301  if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
1302  continue;
1303  }
1304  kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct);
1305  hw_thread.clear();
1306  hw_thread.os_id = i;
1307  hw_thread.ids[0] = i;
1308  hw_thread.ids[1] = 0;
1309  hw_thread.ids[2] = 0;
1310  avail_ct++;
1311  }
1312  if (__kmp_affinity_verbose) {
1313  KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
1314  }
1315  return true;
1316 }
1317 
1318 #if KMP_GROUP_AFFINITY
1319 // If multiple Windows* OS processor groups exist, we can create a 2-level
1320 // topology map with the groups at level 0 and the individual procs at level 1.
1321 // This facilitates letting the threads float among all procs in a group,
1322 // if granularity=group (the default when there are multiple groups).
1323 static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) {
1324  *msg_id = kmp_i18n_null;
1325  int depth = 3;
1326  kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD};
1327  const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR);
1328 
1329  if (__kmp_affinity_verbose) {
1330  KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
1331  }
1332 
1333  // If we aren't affinity capable, then use flat topology
1334  if (!KMP_AFFINITY_CAPABLE()) {
1335  KMP_ASSERT(__kmp_affinity_type == affinity_none);
1336  nPackages = __kmp_num_proc_groups;
1337  __kmp_nThreadsPerCore = 1;
1338  __kmp_ncores = __kmp_xproc;
1339  nCoresPerPkg = nPackages / __kmp_ncores;
1340  return true;
1341  }
1342 
1343  // Construct the data structure to be returned.
1344  __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1345  int avail_ct = 0;
1346  int i;
1347  KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
1348  // Skip this proc if it is not included in the machine model.
1349  if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
1350  continue;
1351  }
1352  kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++);
1353  hw_thread.clear();
1354  hw_thread.os_id = i;
1355  hw_thread.ids[0] = i / BITS_PER_GROUP;
1356  hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP;
1357  }
1358  return true;
1359 }
1360 #endif /* KMP_GROUP_AFFINITY */
1361 
1362 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1363 
1364 template <kmp_uint32 LSB, kmp_uint32 MSB>
1365 static inline unsigned __kmp_extract_bits(kmp_uint32 v) {
1366  const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB;
1367  const kmp_uint32 SHIFT_RIGHT = LSB;
1368  kmp_uint32 retval = v;
1369  retval <<= SHIFT_LEFT;
1370  retval >>= (SHIFT_LEFT + SHIFT_RIGHT);
1371  return retval;
1372 }
1373 
1374 static int __kmp_cpuid_mask_width(int count) {
1375  int r = 0;
1376 
1377  while ((1 << r) < count)
1378  ++r;
1379  return r;
1380 }
1381 
1382 class apicThreadInfo {
1383 public:
1384  unsigned osId; // param to __kmp_affinity_bind_thread
1385  unsigned apicId; // from cpuid after binding
1386  unsigned maxCoresPerPkg; // ""
1387  unsigned maxThreadsPerPkg; // ""
1388  unsigned pkgId; // inferred from above values
1389  unsigned coreId; // ""
1390  unsigned threadId; // ""
1391 };
1392 
1393 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
1394  const void *b) {
1395  const apicThreadInfo *aa = (const apicThreadInfo *)a;
1396  const apicThreadInfo *bb = (const apicThreadInfo *)b;
1397  if (aa->pkgId < bb->pkgId)
1398  return -1;
1399  if (aa->pkgId > bb->pkgId)
1400  return 1;
1401  if (aa->coreId < bb->coreId)
1402  return -1;
1403  if (aa->coreId > bb->coreId)
1404  return 1;
1405  if (aa->threadId < bb->threadId)
1406  return -1;
1407  if (aa->threadId > bb->threadId)
1408  return 1;
1409  return 0;
1410 }
1411 
1412 class kmp_cache_info_t {
1413 public:
1414  struct info_t {
1415  unsigned level, mask;
1416  };
1417  kmp_cache_info_t() : depth(0) { get_leaf4_levels(); }
1418  size_t get_depth() const { return depth; }
1419  info_t &operator[](size_t index) { return table[index]; }
1420  const info_t &operator[](size_t index) const { return table[index]; }
1421 
1422  static kmp_hw_t get_topology_type(unsigned level) {
1423  KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL);
1424  switch (level) {
1425  case 1:
1426  return KMP_HW_L1;
1427  case 2:
1428  return KMP_HW_L2;
1429  case 3:
1430  return KMP_HW_L3;
1431  }
1432  return KMP_HW_UNKNOWN;
1433  }
1434 
1435 private:
1436  static const int MAX_CACHE_LEVEL = 3;
1437 
1438  size_t depth;
1439  info_t table[MAX_CACHE_LEVEL];
1440 
1441  void get_leaf4_levels() {
1442  unsigned level = 0;
1443  while (depth < MAX_CACHE_LEVEL) {
1444  unsigned cache_type, max_threads_sharing;
1445  unsigned cache_level, cache_mask_width;
1446  kmp_cpuid buf2;
1447  __kmp_x86_cpuid(4, level, &buf2);
1448  cache_type = __kmp_extract_bits<0, 4>(buf2.eax);
1449  if (!cache_type)
1450  break;
1451  // Skip instruction caches
1452  if (cache_type == 2) {
1453  level++;
1454  continue;
1455  }
1456  max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1;
1457  cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing);
1458  cache_level = __kmp_extract_bits<5, 7>(buf2.eax);
1459  table[depth].level = cache_level;
1460  table[depth].mask = ((-1) << cache_mask_width);
1461  depth++;
1462  level++;
1463  }
1464  }
1465 };
1466 
1467 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
1468 // an algorithm which cycles through the available os threads, setting
1469 // the current thread's affinity mask to that thread, and then retrieves
1470 // the Apic Id for each thread context using the cpuid instruction.
1471 static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) {
1472  kmp_cpuid buf;
1473  *msg_id = kmp_i18n_null;
1474 
1475  if (__kmp_affinity_verbose) {
1476  KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
1477  }
1478 
1479  // Check if cpuid leaf 4 is supported.
1480  __kmp_x86_cpuid(0, 0, &buf);
1481  if (buf.eax < 4) {
1482  *msg_id = kmp_i18n_str_NoLeaf4Support;
1483  return false;
1484  }
1485 
1486  // The algorithm used starts by setting the affinity to each available thread
1487  // and retrieving info from the cpuid instruction, so if we are not capable of
1488  // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
1489  // need to do something else - use the defaults that we calculated from
1490  // issuing cpuid without binding to each proc.
1491  if (!KMP_AFFINITY_CAPABLE()) {
1492  // Hack to try and infer the machine topology using only the data
1493  // available from cpuid on the current thread, and __kmp_xproc.
1494  KMP_ASSERT(__kmp_affinity_type == affinity_none);
1495 
1496  // Get an upper bound on the number of threads per package using cpuid(1).
1497  // On some OS/chps combinations where HT is supported by the chip but is
1498  // disabled, this value will be 2 on a single core chip. Usually, it will be
1499  // 2 if HT is enabled and 1 if HT is disabled.
1500  __kmp_x86_cpuid(1, 0, &buf);
1501  int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
1502  if (maxThreadsPerPkg == 0) {
1503  maxThreadsPerPkg = 1;
1504  }
1505 
1506  // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
1507  // value.
1508  //
1509  // The author of cpu_count.cpp treated this only an upper bound on the
1510  // number of cores, but I haven't seen any cases where it was greater than
1511  // the actual number of cores, so we will treat it as exact in this block of
1512  // code.
1513  //
1514  // First, we need to check if cpuid(4) is supported on this chip. To see if
1515  // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
1516  // greater.
1517  __kmp_x86_cpuid(0, 0, &buf);
1518  if (buf.eax >= 4) {
1519  __kmp_x86_cpuid(4, 0, &buf);
1520  nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
1521  } else {
1522  nCoresPerPkg = 1;
1523  }
1524 
1525  // There is no way to reliably tell if HT is enabled without issuing the
1526  // cpuid instruction from every thread, can correlating the cpuid info, so
1527  // if the machine is not affinity capable, we assume that HT is off. We have
1528  // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
1529  // does not support HT.
1530  //
1531  // - Older OSes are usually found on machines with older chips, which do not
1532  // support HT.
1533  // - The performance penalty for mistakenly identifying a machine as HT when
1534  // it isn't (which results in blocktime being incorrectly set to 0) is
1535  // greater than the penalty when for mistakenly identifying a machine as
1536  // being 1 thread/core when it is really HT enabled (which results in
1537  // blocktime being incorrectly set to a positive value).
1538  __kmp_ncores = __kmp_xproc;
1539  nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1540  __kmp_nThreadsPerCore = 1;
1541  return true;
1542  }
1543 
1544  // From here on, we can assume that it is safe to call
1545  // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
1546  // __kmp_affinity_type = affinity_none.
1547 
1548  // Save the affinity mask for the current thread.
1549  kmp_affinity_raii_t previous_affinity;
1550 
1551  // Run through each of the available contexts, binding the current thread
1552  // to it, and obtaining the pertinent information using the cpuid instr.
1553  //
1554  // The relevant information is:
1555  // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
1556  // has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
1557  // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
1558  // of this field determines the width of the core# + thread# fields in the
1559  // Apic Id. It is also an upper bound on the number of threads per
1560  // package, but it has been verified that situations happen were it is not
1561  // exact. In particular, on certain OS/chip combinations where Intel(R)
1562  // Hyper-Threading Technology is supported by the chip but has been
1563  // disabled, the value of this field will be 2 (for a single core chip).
1564  // On other OS/chip combinations supporting Intel(R) Hyper-Threading
1565  // Technology, the value of this field will be 1 when Intel(R)
1566  // Hyper-Threading Technology is disabled and 2 when it is enabled.
1567  // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value
1568  // of this field (+1) determines the width of the core# field in the Apic
1569  // Id. The comments in "cpucount.cpp" say that this value is an upper
1570  // bound, but the IA-32 architecture manual says that it is exactly the
1571  // number of cores per package, and I haven't seen any case where it
1572  // wasn't.
1573  //
1574  // From this information, deduce the package Id, core Id, and thread Id,
1575  // and set the corresponding fields in the apicThreadInfo struct.
1576  unsigned i;
1577  apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
1578  __kmp_avail_proc * sizeof(apicThreadInfo));
1579  unsigned nApics = 0;
1580  KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
1581  // Skip this proc if it is not included in the machine model.
1582  if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
1583  continue;
1584  }
1585  KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
1586 
1587  __kmp_affinity_dispatch->bind_thread(i);
1588  threadInfo[nApics].osId = i;
1589 
1590  // The apic id and max threads per pkg come from cpuid(1).
1591  __kmp_x86_cpuid(1, 0, &buf);
1592  if (((buf.edx >> 9) & 1) == 0) {
1593  __kmp_free(threadInfo);
1594  *msg_id = kmp_i18n_str_ApicNotPresent;
1595  return false;
1596  }
1597  threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
1598  threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
1599  if (threadInfo[nApics].maxThreadsPerPkg == 0) {
1600  threadInfo[nApics].maxThreadsPerPkg = 1;
1601  }
1602 
1603  // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
1604  // value.
1605  //
1606  // First, we need to check if cpuid(4) is supported on this chip. To see if
1607  // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
1608  // or greater.
1609  __kmp_x86_cpuid(0, 0, &buf);
1610  if (buf.eax >= 4) {
1611  __kmp_x86_cpuid(4, 0, &buf);
1612  threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
1613  } else {
1614  threadInfo[nApics].maxCoresPerPkg = 1;
1615  }
1616 
1617  // Infer the pkgId / coreId / threadId using only the info obtained locally.
1618  int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
1619  threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
1620 
1621  int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
1622  int widthT = widthCT - widthC;
1623  if (widthT < 0) {
1624  // I've never seen this one happen, but I suppose it could, if the cpuid
1625  // instruction on a chip was really screwed up. Make sure to restore the
1626  // affinity mask before the tail call.
1627  __kmp_free(threadInfo);
1628  *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1629  return false;
1630  }
1631 
1632  int maskC = (1 << widthC) - 1;
1633  threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
1634 
1635  int maskT = (1 << widthT) - 1;
1636  threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
1637 
1638  nApics++;
1639  }
1640 
1641  // We've collected all the info we need.
1642  // Restore the old affinity mask for this thread.
1643  previous_affinity.restore();
1644 
1645  // Sort the threadInfo table by physical Id.
1646  qsort(threadInfo, nApics, sizeof(*threadInfo),
1647  __kmp_affinity_cmp_apicThreadInfo_phys_id);
1648 
1649  // The table is now sorted by pkgId / coreId / threadId, but we really don't
1650  // know the radix of any of the fields. pkgId's may be sparsely assigned among
1651  // the chips on a system. Although coreId's are usually assigned
1652  // [0 .. coresPerPkg-1] and threadId's are usually assigned
1653  // [0..threadsPerCore-1], we don't want to make any such assumptions.
1654  //
1655  // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
1656  // total # packages) are at this point - we want to determine that now. We
1657  // only have an upper bound on the first two figures.
1658  //
1659  // We also perform a consistency check at this point: the values returned by
1660  // the cpuid instruction for any thread bound to a given package had better
1661  // return the same info for maxThreadsPerPkg and maxCoresPerPkg.
1662  nPackages = 1;
1663  nCoresPerPkg = 1;
1664  __kmp_nThreadsPerCore = 1;
1665  unsigned nCores = 1;
1666 
1667  unsigned pkgCt = 1; // to determine radii
1668  unsigned lastPkgId = threadInfo[0].pkgId;
1669  unsigned coreCt = 1;
1670  unsigned lastCoreId = threadInfo[0].coreId;
1671  unsigned threadCt = 1;
1672  unsigned lastThreadId = threadInfo[0].threadId;
1673 
1674  // intra-pkg consist checks
1675  unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
1676  unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
1677 
1678  for (i = 1; i < nApics; i++) {
1679  if (threadInfo[i].pkgId != lastPkgId) {
1680  nCores++;
1681  pkgCt++;
1682  lastPkgId = threadInfo[i].pkgId;
1683  if ((int)coreCt > nCoresPerPkg)
1684  nCoresPerPkg = coreCt;
1685  coreCt = 1;
1686  lastCoreId = threadInfo[i].coreId;
1687  if ((int)threadCt > __kmp_nThreadsPerCore)
1688  __kmp_nThreadsPerCore = threadCt;
1689  threadCt = 1;
1690  lastThreadId = threadInfo[i].threadId;
1691 
1692  // This is a different package, so go on to the next iteration without
1693  // doing any consistency checks. Reset the consistency check vars, though.
1694  prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
1695  prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
1696  continue;
1697  }
1698 
1699  if (threadInfo[i].coreId != lastCoreId) {
1700  nCores++;
1701  coreCt++;
1702  lastCoreId = threadInfo[i].coreId;
1703  if ((int)threadCt > __kmp_nThreadsPerCore)
1704  __kmp_nThreadsPerCore = threadCt;
1705  threadCt = 1;
1706  lastThreadId = threadInfo[i].threadId;
1707  } else if (threadInfo[i].threadId != lastThreadId) {
1708  threadCt++;
1709  lastThreadId = threadInfo[i].threadId;
1710  } else {
1711  __kmp_free(threadInfo);
1712  *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
1713  return false;
1714  }
1715 
1716  // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
1717  // fields agree between all the threads bounds to a given package.
1718  if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
1719  (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
1720  __kmp_free(threadInfo);
1721  *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1722  return false;
1723  }
1724  }
1725  // When affinity is off, this routine will still be called to set
1726  // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1727  // Make sure all these vars are set correctly
1728  nPackages = pkgCt;
1729  if ((int)coreCt > nCoresPerPkg)
1730  nCoresPerPkg = coreCt;
1731  if ((int)threadCt > __kmp_nThreadsPerCore)
1732  __kmp_nThreadsPerCore = threadCt;
1733  __kmp_ncores = nCores;
1734  KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
1735 
1736  // Now that we've determined the number of packages, the number of cores per
1737  // package, and the number of threads per core, we can construct the data
1738  // structure that is to be returned.
1739  int idx = 0;
1740  int pkgLevel = 0;
1741  int coreLevel = 1;
1742  int threadLevel = 2;
1743  //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
1744  int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
1745  kmp_hw_t types[3];
1746  if (pkgLevel >= 0)
1747  types[idx++] = KMP_HW_SOCKET;
1748  if (coreLevel >= 0)
1749  types[idx++] = KMP_HW_CORE;
1750  if (threadLevel >= 0)
1751  types[idx++] = KMP_HW_THREAD;
1752 
1753  KMP_ASSERT(depth > 0);
1754  __kmp_topology = kmp_topology_t::allocate(nApics, depth, types);
1755 
1756  for (i = 0; i < nApics; ++i) {
1757  idx = 0;
1758  unsigned os = threadInfo[i].osId;
1759  kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
1760  hw_thread.clear();
1761 
1762  if (pkgLevel >= 0) {
1763  hw_thread.ids[idx++] = threadInfo[i].pkgId;
1764  }
1765  if (coreLevel >= 0) {
1766  hw_thread.ids[idx++] = threadInfo[i].coreId;
1767  }
1768  if (threadLevel >= 0) {
1769  hw_thread.ids[idx++] = threadInfo[i].threadId;
1770  }
1771  hw_thread.os_id = os;
1772  }
1773 
1774  __kmp_free(threadInfo);
1775  __kmp_topology->sort_ids();
1776  if (!__kmp_topology->check_ids()) {
1777  kmp_topology_t::deallocate(__kmp_topology);
1778  __kmp_topology = nullptr;
1779  *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
1780  return false;
1781  }
1782  return true;
1783 }
1784 
1785 // Intel(R) microarchitecture code name Nehalem, Dunnington and later
1786 // architectures support a newer interface for specifying the x2APIC Ids,
1787 // based on CPUID.B or CPUID.1F
1788 /*
1789  * CPUID.B or 1F, Input ECX (sub leaf # aka level number)
1790  Bits Bits Bits Bits
1791  31-16 15-8 7-4 4-0
1792 ---+-----------+--------------+-------------+-----------------+
1793 EAX| reserved | reserved | reserved | Bits to Shift |
1794 ---+-----------|--------------+-------------+-----------------|
1795 EBX| reserved | Num logical processors at level (16 bits) |
1796 ---+-----------|--------------+-------------------------------|
1797 ECX| reserved | Level Type | Level Number (8 bits) |
1798 ---+-----------+--------------+-------------------------------|
1799 EDX| X2APIC ID (32 bits) |
1800 ---+----------------------------------------------------------+
1801 */
1802 
1803 enum {
1804  INTEL_LEVEL_TYPE_INVALID = 0, // Package level
1805  INTEL_LEVEL_TYPE_SMT = 1,
1806  INTEL_LEVEL_TYPE_CORE = 2,
1807  INTEL_LEVEL_TYPE_TILE = 3,
1808  INTEL_LEVEL_TYPE_MODULE = 4,
1809  INTEL_LEVEL_TYPE_DIE = 5,
1810  INTEL_LEVEL_TYPE_LAST = 6,
1811 };
1812 
1813 struct cpuid_level_info_t {
1814  unsigned level_type, mask, mask_width, nitems, cache_mask;
1815 };
1816 
1817 static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) {
1818  switch (intel_type) {
1819  case INTEL_LEVEL_TYPE_INVALID:
1820  return KMP_HW_SOCKET;
1821  case INTEL_LEVEL_TYPE_SMT:
1822  return KMP_HW_THREAD;
1823  case INTEL_LEVEL_TYPE_CORE:
1824  return KMP_HW_CORE;
1825  case INTEL_LEVEL_TYPE_TILE:
1826  return KMP_HW_TILE;
1827  case INTEL_LEVEL_TYPE_MODULE:
1828  return KMP_HW_MODULE;
1829  case INTEL_LEVEL_TYPE_DIE:
1830  return KMP_HW_DIE;
1831  }
1832  return KMP_HW_UNKNOWN;
1833 }
1834 
1835 // This function takes the topology leaf, a levels array to store the levels
1836 // detected and a bitmap of the known levels.
1837 // Returns the number of levels in the topology
1838 static unsigned
1839 __kmp_x2apicid_get_levels(int leaf,
1840  cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST],
1841  kmp_uint64 known_levels) {
1842  unsigned level, levels_index;
1843  unsigned level_type, mask_width, nitems;
1844  kmp_cpuid buf;
1845 
1846  // New algorithm has known topology layers act as highest unknown topology
1847  // layers when unknown topology layers exist.
1848  // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z>
1849  // are unknown topology layers, Then SMT will take the characteristics of
1850  // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>).
1851  // This eliminates unknown portions of the topology while still keeping the
1852  // correct structure.
1853  level = levels_index = 0;
1854  do {
1855  __kmp_x86_cpuid(leaf, level, &buf);
1856  level_type = __kmp_extract_bits<8, 15>(buf.ecx);
1857  mask_width = __kmp_extract_bits<0, 4>(buf.eax);
1858  nitems = __kmp_extract_bits<0, 15>(buf.ebx);
1859  if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0)
1860  return 0;
1861 
1862  if (known_levels & (1ull << level_type)) {
1863  // Add a new level to the topology
1864  KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST);
1865  levels[levels_index].level_type = level_type;
1866  levels[levels_index].mask_width = mask_width;
1867  levels[levels_index].nitems = nitems;
1868  levels_index++;
1869  } else {
1870  // If it is an unknown level, then logically move the previous layer up
1871  if (levels_index > 0) {
1872  levels[levels_index - 1].mask_width = mask_width;
1873  levels[levels_index - 1].nitems = nitems;
1874  }
1875  }
1876  level++;
1877  } while (level_type != INTEL_LEVEL_TYPE_INVALID);
1878 
1879  // Set the masks to & with apicid
1880  for (unsigned i = 0; i < levels_index; ++i) {
1881  if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) {
1882  levels[i].mask = ~((-1) << levels[i].mask_width);
1883  levels[i].cache_mask = (-1) << levels[i].mask_width;
1884  for (unsigned j = 0; j < i; ++j)
1885  levels[i].mask ^= levels[j].mask;
1886  } else {
1887  KMP_DEBUG_ASSERT(levels_index > 0);
1888  levels[i].mask = (-1) << levels[i - 1].mask_width;
1889  levels[i].cache_mask = 0;
1890  }
1891  }
1892  return levels_index;
1893 }
1894 
1895 static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) {
1896 
1897  cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST];
1898  kmp_hw_t types[INTEL_LEVEL_TYPE_LAST];
1899  unsigned levels_index;
1900  kmp_cpuid buf;
1901  kmp_uint64 known_levels;
1902  int topology_leaf, highest_leaf, apic_id;
1903  int num_leaves;
1904  static int leaves[] = {0, 0};
1905 
1906  kmp_i18n_id_t leaf_message_id;
1907 
1908  KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST);
1909 
1910  *msg_id = kmp_i18n_null;
1911  if (__kmp_affinity_verbose) {
1912  KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
1913  }
1914 
1915  // Figure out the known topology levels
1916  known_levels = 0ull;
1917  for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) {
1918  if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) {
1919  known_levels |= (1ull << i);
1920  }
1921  }
1922 
1923  // Get the highest cpuid leaf supported
1924  __kmp_x86_cpuid(0, 0, &buf);
1925  highest_leaf = buf.eax;
1926 
1927  // If a specific topology method was requested, only allow that specific leaf
1928  // otherwise, try both leaves 31 and 11 in that order
1929  num_leaves = 0;
1930  if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
1931  num_leaves = 1;
1932  leaves[0] = 11;
1933  leaf_message_id = kmp_i18n_str_NoLeaf11Support;
1934  } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
1935  num_leaves = 1;
1936  leaves[0] = 31;
1937  leaf_message_id = kmp_i18n_str_NoLeaf31Support;
1938  } else {
1939  num_leaves = 2;
1940  leaves[0] = 31;
1941  leaves[1] = 11;
1942  leaf_message_id = kmp_i18n_str_NoLeaf11Support;
1943  }
1944 
1945  // Check to see if cpuid leaf 31 or 11 is supported.
1946  __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
1947  topology_leaf = -1;
1948  for (int i = 0; i < num_leaves; ++i) {
1949  int leaf = leaves[i];
1950  if (highest_leaf < leaf)
1951  continue;
1952  __kmp_x86_cpuid(leaf, 0, &buf);
1953  if (buf.ebx == 0)
1954  continue;
1955  topology_leaf = leaf;
1956  levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels);
1957  if (levels_index == 0)
1958  continue;
1959  break;
1960  }
1961  if (topology_leaf == -1 || levels_index == 0) {
1962  *msg_id = leaf_message_id;
1963  return false;
1964  }
1965  KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST);
1966 
1967  // The algorithm used starts by setting the affinity to each available thread
1968  // and retrieving info from the cpuid instruction, so if we are not capable of
1969  // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then
1970  // we need to do something else - use the defaults that we calculated from
1971  // issuing cpuid without binding to each proc.
1972  if (!KMP_AFFINITY_CAPABLE()) {
1973  // Hack to try and infer the machine topology using only the data
1974  // available from cpuid on the current thread, and __kmp_xproc.
1975  KMP_ASSERT(__kmp_affinity_type == affinity_none);
1976  for (unsigned i = 0; i < levels_index; ++i) {
1977  if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) {
1978  __kmp_nThreadsPerCore = levels[i].nitems;
1979  } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) {
1980  nCoresPerPkg = levels[i].nitems;
1981  }
1982  }
1983  __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1984  nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1985  return true;
1986  }
1987 
1988  // Allocate the data structure to be returned.
1989  int depth = levels_index;
1990  for (int i = depth - 1, j = 0; i >= 0; --i, ++j)
1991  types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type);
1992  __kmp_topology =
1993  kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types);
1994 
1995  // Insert equivalent cache types if they exist
1996  kmp_cache_info_t cache_info;
1997  for (size_t i = 0; i < cache_info.get_depth(); ++i) {
1998  const kmp_cache_info_t::info_t &info = cache_info[i];
1999  unsigned cache_mask = info.mask;
2000  unsigned cache_level = info.level;
2001  for (unsigned j = 0; j < levels_index; ++j) {
2002  unsigned hw_cache_mask = levels[j].cache_mask;
2003  kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level);
2004  if (hw_cache_mask == cache_mask && j < levels_index - 1) {
2005  kmp_hw_t type =
2006  __kmp_intel_type_2_topology_type(levels[j + 1].level_type);
2007  __kmp_topology->set_equivalent_type(cache_type, type);
2008  }
2009  }
2010  }
2011 
2012  // From here on, we can assume that it is safe to call
2013  // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
2014  // __kmp_affinity_type = affinity_none.
2015 
2016  // Save the affinity mask for the current thread.
2017  kmp_affinity_raii_t previous_affinity;
2018 
2019  // Run through each of the available contexts, binding the current thread
2020  // to it, and obtaining the pertinent information using the cpuid instr.
2021  unsigned int proc;
2022  int hw_thread_index = 0;
2023  KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
2024  cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST];
2025  unsigned my_levels_index;
2026 
2027  // Skip this proc if it is not included in the machine model.
2028  if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
2029  continue;
2030  }
2031  KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc);
2032 
2033  __kmp_affinity_dispatch->bind_thread(proc);
2034 
2035  // New algorithm
2036  __kmp_x86_cpuid(topology_leaf, 0, &buf);
2037  apic_id = buf.edx;
2038  kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
2039  my_levels_index =
2040  __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels);
2041  if (my_levels_index == 0 || my_levels_index != levels_index) {
2042  *msg_id = kmp_i18n_str_InvalidCpuidInfo;
2043  return false;
2044  }
2045  hw_thread.clear();
2046  hw_thread.os_id = proc;
2047  // Put in topology information
2048  for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) {
2049  hw_thread.ids[idx] = apic_id & my_levels[j].mask;
2050  if (j > 0) {
2051  hw_thread.ids[idx] >>= my_levels[j - 1].mask_width;
2052  }
2053  }
2054  hw_thread_index++;
2055  }
2056  KMP_ASSERT(hw_thread_index > 0);
2057  __kmp_topology->sort_ids();
2058  if (!__kmp_topology->check_ids()) {
2059  kmp_topology_t::deallocate(__kmp_topology);
2060  __kmp_topology = nullptr;
2061  *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
2062  return false;
2063  }
2064  return true;
2065 }
2066 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2067 
2068 #define osIdIndex 0
2069 #define threadIdIndex 1
2070 #define coreIdIndex 2
2071 #define pkgIdIndex 3
2072 #define nodeIdIndex 4
2073 
2074 typedef unsigned *ProcCpuInfo;
2075 static unsigned maxIndex = pkgIdIndex;
2076 
2077 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
2078  const void *b) {
2079  unsigned i;
2080  const unsigned *aa = *(unsigned *const *)a;
2081  const unsigned *bb = *(unsigned *const *)b;
2082  for (i = maxIndex;; i--) {
2083  if (aa[i] < bb[i])
2084  return -1;
2085  if (aa[i] > bb[i])
2086  return 1;
2087  if (i == osIdIndex)
2088  break;
2089  }
2090  return 0;
2091 }
2092 
2093 #if KMP_USE_HIER_SCHED
2094 // Set the array sizes for the hierarchy layers
2095 static void __kmp_dispatch_set_hierarchy_values() {
2096  // Set the maximum number of L1's to number of cores
2097  // Set the maximum number of L2's to to either number of cores / 2 for
2098  // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
2099  // Or the number of cores for Intel(R) Xeon(R) processors
2100  // Set the maximum number of NUMA nodes and L3's to number of packages
2101  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
2102  nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
2103  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
2104 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \
2105  KMP_MIC_SUPPORTED
2106  if (__kmp_mic_type >= mic3)
2107  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
2108  else
2109 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
2110  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
2111  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
2112  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
2113  __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
2114  // Set the number of threads per unit
2115  // Number of hardware threads per L1/L2/L3/NUMA/LOOP
2116  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
2117  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
2118  __kmp_nThreadsPerCore;
2119 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \
2120  KMP_MIC_SUPPORTED
2121  if (__kmp_mic_type >= mic3)
2122  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
2123  2 * __kmp_nThreadsPerCore;
2124  else
2125 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
2126  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
2127  __kmp_nThreadsPerCore;
2128  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
2129  nCoresPerPkg * __kmp_nThreadsPerCore;
2130  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
2131  nCoresPerPkg * __kmp_nThreadsPerCore;
2132  __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
2133  nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
2134 }
2135 
2136 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
2137 // i.e., this thread's L1 or this thread's L2, etc.
2138 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
2139  int index = type + 1;
2140  int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
2141  KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
2142  if (type == kmp_hier_layer_e::LAYER_THREAD)
2143  return tid;
2144  else if (type == kmp_hier_layer_e::LAYER_LOOP)
2145  return 0;
2146  KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
2147  if (tid >= num_hw_threads)
2148  tid = tid % num_hw_threads;
2149  return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
2150 }
2151 
2152 // Return the number of t1's per t2
2153 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
2154  int i1 = t1 + 1;
2155  int i2 = t2 + 1;
2156  KMP_DEBUG_ASSERT(i1 <= i2);
2157  KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
2158  KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
2159  KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
2160  // (nthreads/t2) / (nthreads/t1) = t1 / t2
2161  return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
2162 }
2163 #endif // KMP_USE_HIER_SCHED
2164 
2165 static inline const char *__kmp_cpuinfo_get_filename() {
2166  const char *filename;
2167  if (__kmp_cpuinfo_file != nullptr)
2168  filename = __kmp_cpuinfo_file;
2169  else
2170  filename = "/proc/cpuinfo";
2171  return filename;
2172 }
2173 
2174 static inline const char *__kmp_cpuinfo_get_envvar() {
2175  const char *envvar = nullptr;
2176  if (__kmp_cpuinfo_file != nullptr)
2177  envvar = "KMP_CPUINFO_FILE";
2178  return envvar;
2179 }
2180 
2181 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
2182 // affinity map.
2183 static bool __kmp_affinity_create_cpuinfo_map(int *line,
2184  kmp_i18n_id_t *const msg_id) {
2185  const char *filename = __kmp_cpuinfo_get_filename();
2186  const char *envvar = __kmp_cpuinfo_get_envvar();
2187  *msg_id = kmp_i18n_null;
2188 
2189  if (__kmp_affinity_verbose) {
2190  KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
2191  }
2192 
2193  kmp_safe_raii_file_t f(filename, "r", envvar);
2194 
2195  // Scan of the file, and count the number of "processor" (osId) fields,
2196  // and find the highest value of <n> for a node_<n> field.
2197  char buf[256];
2198  unsigned num_records = 0;
2199  while (!feof(f)) {
2200  buf[sizeof(buf) - 1] = 1;
2201  if (!fgets(buf, sizeof(buf), f)) {
2202  // Read errors presumably because of EOF
2203  break;
2204  }
2205 
2206  char s1[] = "processor";
2207  if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2208  num_records++;
2209  continue;
2210  }
2211 
2212  // FIXME - this will match "node_<n> <garbage>"
2213  unsigned level;
2214  if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2215  // validate the input fisrt:
2216  if (level > (unsigned)__kmp_xproc) { // level is too big
2217  level = __kmp_xproc;
2218  }
2219  if (nodeIdIndex + level >= maxIndex) {
2220  maxIndex = nodeIdIndex + level;
2221  }
2222  continue;
2223  }
2224  }
2225 
2226  // Check for empty file / no valid processor records, or too many. The number
2227  // of records can't exceed the number of valid bits in the affinity mask.
2228  if (num_records == 0) {
2229  *msg_id = kmp_i18n_str_NoProcRecords;
2230  return false;
2231  }
2232  if (num_records > (unsigned)__kmp_xproc) {
2233  *msg_id = kmp_i18n_str_TooManyProcRecords;
2234  return false;
2235  }
2236 
2237  // Set the file pointer back to the beginning, so that we can scan the file
2238  // again, this time performing a full parse of the data. Allocate a vector of
2239  // ProcCpuInfo object, where we will place the data. Adding an extra element
2240  // at the end allows us to remove a lot of extra checks for termination
2241  // conditions.
2242  if (fseek(f, 0, SEEK_SET) != 0) {
2243  *msg_id = kmp_i18n_str_CantRewindCpuinfo;
2244  return false;
2245  }
2246 
2247  // Allocate the array of records to store the proc info in. The dummy
2248  // element at the end makes the logic in filling them out easier to code.
2249  unsigned **threadInfo =
2250  (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
2251  unsigned i;
2252  for (i = 0; i <= num_records; i++) {
2253  threadInfo[i] =
2254  (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2255  }
2256 
2257 #define CLEANUP_THREAD_INFO \
2258  for (i = 0; i <= num_records; i++) { \
2259  __kmp_free(threadInfo[i]); \
2260  } \
2261  __kmp_free(threadInfo);
2262 
2263  // A value of UINT_MAX means that we didn't find the field
2264  unsigned __index;
2265 
2266 #define INIT_PROC_INFO(p) \
2267  for (__index = 0; __index <= maxIndex; __index++) { \
2268  (p)[__index] = UINT_MAX; \
2269  }
2270 
2271  for (i = 0; i <= num_records; i++) {
2272  INIT_PROC_INFO(threadInfo[i]);
2273  }
2274 
2275  unsigned num_avail = 0;
2276  *line = 0;
2277  while (!feof(f)) {
2278  // Create an inner scoping level, so that all the goto targets at the end of
2279  // the loop appear in an outer scoping level. This avoids warnings about
2280  // jumping past an initialization to a target in the same block.
2281  {
2282  buf[sizeof(buf) - 1] = 1;
2283  bool long_line = false;
2284  if (!fgets(buf, sizeof(buf), f)) {
2285  // Read errors presumably because of EOF
2286  // If there is valid data in threadInfo[num_avail], then fake
2287  // a blank line in ensure that the last address gets parsed.
2288  bool valid = false;
2289  for (i = 0; i <= maxIndex; i++) {
2290  if (threadInfo[num_avail][i] != UINT_MAX) {
2291  valid = true;
2292  }
2293  }
2294  if (!valid) {
2295  break;
2296  }
2297  buf[0] = 0;
2298  } else if (!buf[sizeof(buf) - 1]) {
2299  // The line is longer than the buffer. Set a flag and don't
2300  // emit an error if we were going to ignore the line, anyway.
2301  long_line = true;
2302 
2303 #define CHECK_LINE \
2304  if (long_line) { \
2305  CLEANUP_THREAD_INFO; \
2306  *msg_id = kmp_i18n_str_LongLineCpuinfo; \
2307  return false; \
2308  }
2309  }
2310  (*line)++;
2311 
2312  char s1[] = "processor";
2313  if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2314  CHECK_LINE;
2315  char *p = strchr(buf + sizeof(s1) - 1, ':');
2316  unsigned val;
2317  if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2318  goto no_val;
2319  if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
2320 #if KMP_ARCH_AARCH64
2321  // Handle the old AArch64 /proc/cpuinfo layout differently,
2322  // it contains all of the 'processor' entries listed in a
2323  // single 'Processor' section, therefore the normal looking
2324  // for duplicates in that section will always fail.
2325  num_avail++;
2326 #else
2327  goto dup_field;
2328 #endif
2329  threadInfo[num_avail][osIdIndex] = val;
2330 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
2331  char path[256];
2332  KMP_SNPRINTF(
2333  path, sizeof(path),
2334  "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
2335  threadInfo[num_avail][osIdIndex]);
2336  __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
2337 
2338  KMP_SNPRINTF(path, sizeof(path),
2339  "/sys/devices/system/cpu/cpu%u/topology/core_id",
2340  threadInfo[num_avail][osIdIndex]);
2341  __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
2342  continue;
2343 #else
2344  }
2345  char s2[] = "physical id";
2346  if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
2347  CHECK_LINE;
2348  char *p = strchr(buf + sizeof(s2) - 1, ':');
2349  unsigned val;
2350  if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2351  goto no_val;
2352  if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
2353  goto dup_field;
2354  threadInfo[num_avail][pkgIdIndex] = val;
2355  continue;
2356  }
2357  char s3[] = "core id";
2358  if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
2359  CHECK_LINE;
2360  char *p = strchr(buf + sizeof(s3) - 1, ':');
2361  unsigned val;
2362  if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2363  goto no_val;
2364  if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
2365  goto dup_field;
2366  threadInfo[num_avail][coreIdIndex] = val;
2367  continue;
2368 #endif // KMP_OS_LINUX && USE_SYSFS_INFO
2369  }
2370  char s4[] = "thread id";
2371  if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
2372  CHECK_LINE;
2373  char *p = strchr(buf + sizeof(s4) - 1, ':');
2374  unsigned val;
2375  if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2376  goto no_val;
2377  if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
2378  goto dup_field;
2379  threadInfo[num_avail][threadIdIndex] = val;
2380  continue;
2381  }
2382  unsigned level;
2383  if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2384  CHECK_LINE;
2385  char *p = strchr(buf + sizeof(s4) - 1, ':');
2386  unsigned val;
2387  if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2388  goto no_val;
2389  KMP_ASSERT(nodeIdIndex + level <= maxIndex);
2390  if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
2391  goto dup_field;
2392  threadInfo[num_avail][nodeIdIndex + level] = val;
2393  continue;
2394  }
2395 
2396  // We didn't recognize the leading token on the line. There are lots of
2397  // leading tokens that we don't recognize - if the line isn't empty, go on
2398  // to the next line.
2399  if ((*buf != 0) && (*buf != '\n')) {
2400  // If the line is longer than the buffer, read characters
2401  // until we find a newline.
2402  if (long_line) {
2403  int ch;
2404  while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
2405  ;
2406  }
2407  continue;
2408  }
2409 
2410  // A newline has signalled the end of the processor record.
2411  // Check that there aren't too many procs specified.
2412  if ((int)num_avail == __kmp_xproc) {
2413  CLEANUP_THREAD_INFO;
2414  *msg_id = kmp_i18n_str_TooManyEntries;
2415  return false;
2416  }
2417 
2418  // Check for missing fields. The osId field must be there, and we
2419  // currently require that the physical id field is specified, also.
2420  if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
2421  CLEANUP_THREAD_INFO;
2422  *msg_id = kmp_i18n_str_MissingProcField;
2423  return false;
2424  }
2425  if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
2426  CLEANUP_THREAD_INFO;
2427  *msg_id = kmp_i18n_str_MissingPhysicalIDField;
2428  return false;
2429  }
2430 
2431  // Skip this proc if it is not included in the machine model.
2432  if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
2433  __kmp_affin_fullMask)) {
2434  INIT_PROC_INFO(threadInfo[num_avail]);
2435  continue;
2436  }
2437 
2438  // We have a successful parse of this proc's info.
2439  // Increment the counter, and prepare for the next proc.
2440  num_avail++;
2441  KMP_ASSERT(num_avail <= num_records);
2442  INIT_PROC_INFO(threadInfo[num_avail]);
2443  }
2444  continue;
2445 
2446  no_val:
2447  CLEANUP_THREAD_INFO;
2448  *msg_id = kmp_i18n_str_MissingValCpuinfo;
2449  return false;
2450 
2451  dup_field:
2452  CLEANUP_THREAD_INFO;
2453  *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
2454  return false;
2455  }
2456  *line = 0;
2457 
2458 #if KMP_MIC && REDUCE_TEAM_SIZE
2459  unsigned teamSize = 0;
2460 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2461 
2462  // check for num_records == __kmp_xproc ???
2463 
2464  // If it is configured to omit the package level when there is only a single
2465  // package, the logic at the end of this routine won't work if there is only a
2466  // single thread
2467  KMP_ASSERT(num_avail > 0);
2468  KMP_ASSERT(num_avail <= num_records);
2469 
2470  // Sort the threadInfo table by physical Id.
2471  qsort(threadInfo, num_avail, sizeof(*threadInfo),
2472  __kmp_affinity_cmp_ProcCpuInfo_phys_id);
2473 
2474  // The table is now sorted by pkgId / coreId / threadId, but we really don't
2475  // know the radix of any of the fields. pkgId's may be sparsely assigned among
2476  // the chips on a system. Although coreId's are usually assigned
2477  // [0 .. coresPerPkg-1] and threadId's are usually assigned
2478  // [0..threadsPerCore-1], we don't want to make any such assumptions.
2479  //
2480  // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
2481  // total # packages) are at this point - we want to determine that now. We
2482  // only have an upper bound on the first two figures.
2483  unsigned *counts =
2484  (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2485  unsigned *maxCt =
2486  (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2487  unsigned *totals =
2488  (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2489  unsigned *lastId =
2490  (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2491 
2492  bool assign_thread_ids = false;
2493  unsigned threadIdCt;
2494  unsigned index;
2495 
2496 restart_radix_check:
2497  threadIdCt = 0;
2498 
2499  // Initialize the counter arrays with data from threadInfo[0].
2500  if (assign_thread_ids) {
2501  if (threadInfo[0][threadIdIndex] == UINT_MAX) {
2502  threadInfo[0][threadIdIndex] = threadIdCt++;
2503  } else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
2504  threadIdCt = threadInfo[0][threadIdIndex] + 1;
2505  }
2506  }
2507  for (index = 0; index <= maxIndex; index++) {
2508  counts[index] = 1;
2509  maxCt[index] = 1;
2510  totals[index] = 1;
2511  lastId[index] = threadInfo[0][index];
2512  ;
2513  }
2514 
2515  // Run through the rest of the OS procs.
2516  for (i = 1; i < num_avail; i++) {
2517  // Find the most significant index whose id differs from the id for the
2518  // previous OS proc.
2519  for (index = maxIndex; index >= threadIdIndex; index--) {
2520  if (assign_thread_ids && (index == threadIdIndex)) {
2521  // Auto-assign the thread id field if it wasn't specified.
2522  if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2523  threadInfo[i][threadIdIndex] = threadIdCt++;
2524  }
2525  // Apparently the thread id field was specified for some entries and not
2526  // others. Start the thread id counter off at the next higher thread id.
2527  else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2528  threadIdCt = threadInfo[i][threadIdIndex] + 1;
2529  }
2530  }
2531  if (threadInfo[i][index] != lastId[index]) {
2532  // Run through all indices which are less significant, and reset the
2533  // counts to 1. At all levels up to and including index, we need to
2534  // increment the totals and record the last id.
2535  unsigned index2;
2536  for (index2 = threadIdIndex; index2 < index; index2++) {
2537  totals[index2]++;
2538  if (counts[index2] > maxCt[index2]) {
2539  maxCt[index2] = counts[index2];
2540  }
2541  counts[index2] = 1;
2542  lastId[index2] = threadInfo[i][index2];
2543  }
2544  counts[index]++;
2545  totals[index]++;
2546  lastId[index] = threadInfo[i][index];
2547 
2548  if (assign_thread_ids && (index > threadIdIndex)) {
2549 
2550 #if KMP_MIC && REDUCE_TEAM_SIZE
2551  // The default team size is the total #threads in the machine
2552  // minus 1 thread for every core that has 3 or more threads.
2553  teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
2554 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2555 
2556  // Restart the thread counter, as we are on a new core.
2557  threadIdCt = 0;
2558 
2559  // Auto-assign the thread id field if it wasn't specified.
2560  if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2561  threadInfo[i][threadIdIndex] = threadIdCt++;
2562  }
2563 
2564  // Apparently the thread id field was specified for some entries and
2565  // not others. Start the thread id counter off at the next higher
2566  // thread id.
2567  else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2568  threadIdCt = threadInfo[i][threadIdIndex] + 1;
2569  }
2570  }
2571  break;
2572  }
2573  }
2574  if (index < threadIdIndex) {
2575  // If thread ids were specified, it is an error if they are not unique.
2576  // Also, check that we waven't already restarted the loop (to be safe -
2577  // shouldn't need to).
2578  if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
2579  __kmp_free(lastId);
2580  __kmp_free(totals);
2581  __kmp_free(maxCt);
2582  __kmp_free(counts);
2583  CLEANUP_THREAD_INFO;
2584  *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
2585  return false;
2586  }
2587 
2588  // If the thread ids were not specified and we see entries entries that
2589  // are duplicates, start the loop over and assign the thread ids manually.
2590  assign_thread_ids = true;
2591  goto restart_radix_check;
2592  }
2593  }
2594 
2595 #if KMP_MIC && REDUCE_TEAM_SIZE
2596  // The default team size is the total #threads in the machine
2597  // minus 1 thread for every core that has 3 or more threads.
2598  teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
2599 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2600 
2601  for (index = threadIdIndex; index <= maxIndex; index++) {
2602  if (counts[index] > maxCt[index]) {
2603  maxCt[index] = counts[index];
2604  }
2605  }
2606 
2607  __kmp_nThreadsPerCore = maxCt[threadIdIndex];
2608  nCoresPerPkg = maxCt[coreIdIndex];
2609  nPackages = totals[pkgIdIndex];
2610 
2611  // When affinity is off, this routine will still be called to set
2612  // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2613  // Make sure all these vars are set correctly, and return now if affinity is
2614  // not enabled.
2615  __kmp_ncores = totals[coreIdIndex];
2616  if (!KMP_AFFINITY_CAPABLE()) {
2617  KMP_ASSERT(__kmp_affinity_type == affinity_none);
2618  return true;
2619  }
2620 
2621 #if KMP_MIC && REDUCE_TEAM_SIZE
2622  // Set the default team size.
2623  if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
2624  __kmp_dflt_team_nth = teamSize;
2625  KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
2626  "__kmp_dflt_team_nth = %d\n",
2627  __kmp_dflt_team_nth));
2628  }
2629 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2630 
2631  KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
2632 
2633  // Count the number of levels which have more nodes at that level than at the
2634  // parent's level (with there being an implicit root node of the top level).
2635  // This is equivalent to saying that there is at least one node at this level
2636  // which has a sibling. These levels are in the map, and the package level is
2637  // always in the map.
2638  bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
2639  for (index = threadIdIndex; index < maxIndex; index++) {
2640  KMP_ASSERT(totals[index] >= totals[index + 1]);
2641  inMap[index] = (totals[index] > totals[index + 1]);
2642  }
2643  inMap[maxIndex] = (totals[maxIndex] > 1);
2644  inMap[pkgIdIndex] = true;
2645  inMap[coreIdIndex] = true;
2646  inMap[threadIdIndex] = true;
2647 
2648  int depth = 0;
2649  int idx = 0;
2650  kmp_hw_t types[KMP_HW_LAST];
2651  int pkgLevel = -1;
2652  int coreLevel = -1;
2653  int threadLevel = -1;
2654  for (index = threadIdIndex; index <= maxIndex; index++) {
2655  if (inMap[index]) {
2656  depth++;
2657  }
2658  }
2659  if (inMap[pkgIdIndex]) {
2660  pkgLevel = idx;
2661  types[idx++] = KMP_HW_SOCKET;
2662  }
2663  if (inMap[coreIdIndex]) {
2664  coreLevel = idx;
2665  types[idx++] = KMP_HW_CORE;
2666  }
2667  if (inMap[threadIdIndex]) {
2668  threadLevel = idx;
2669  types[idx++] = KMP_HW_THREAD;
2670  }
2671  KMP_ASSERT(depth > 0);
2672 
2673  // Construct the data structure that is to be returned.
2674  __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types);
2675 
2676  for (i = 0; i < num_avail; ++i) {
2677  unsigned os = threadInfo[i][osIdIndex];
2678  int src_index;
2679  int dst_index = 0;
2680  kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
2681  hw_thread.clear();
2682  hw_thread.os_id = os;
2683 
2684  idx = 0;
2685  for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
2686  if (!inMap[src_index]) {
2687  continue;
2688  }
2689  if (src_index == pkgIdIndex) {
2690  hw_thread.ids[pkgLevel] = threadInfo[i][src_index];
2691  } else if (src_index == coreIdIndex) {
2692  hw_thread.ids[coreLevel] = threadInfo[i][src_index];
2693  } else if (src_index == threadIdIndex) {
2694  hw_thread.ids[threadLevel] = threadInfo[i][src_index];
2695  }
2696  dst_index++;
2697  }
2698  }
2699 
2700  __kmp_free(inMap);
2701  __kmp_free(lastId);
2702  __kmp_free(totals);
2703  __kmp_free(maxCt);
2704  __kmp_free(counts);
2705  CLEANUP_THREAD_INFO;
2706  __kmp_topology->sort_ids();
2707  if (!__kmp_topology->check_ids()) {
2708  kmp_topology_t::deallocate(__kmp_topology);
2709  __kmp_topology = nullptr;
2710  *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
2711  return false;
2712  }
2713  return true;
2714 }
2715 
2716 // Create and return a table of affinity masks, indexed by OS thread ID.
2717 // This routine handles OR'ing together all the affinity masks of threads
2718 // that are sufficiently close, if granularity > fine.
2719 static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex,
2720  unsigned *numUnique) {
2721  // First form a table of affinity masks in order of OS thread id.
2722  int maxOsId;
2723  int i;
2724  int numAddrs = __kmp_topology->get_num_hw_threads();
2725  int depth = __kmp_topology->get_depth();
2726  KMP_ASSERT(numAddrs);
2727  KMP_ASSERT(depth);
2728 
2729  maxOsId = 0;
2730  for (i = numAddrs - 1;; --i) {
2731  int osId = __kmp_topology->at(i).os_id;
2732  if (osId > maxOsId) {
2733  maxOsId = osId;
2734  }
2735  if (i == 0)
2736  break;
2737  }
2738  kmp_affin_mask_t *osId2Mask;
2739  KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1));
2740  KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
2741  if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
2742  KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels);
2743  }
2744  if (__kmp_affinity_gran_levels >= (int)depth) {
2745  if (__kmp_affinity_verbose ||
2746  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
2747  KMP_WARNING(AffThreadsMayMigrate);
2748  }
2749  }
2750 
2751  // Run through the table, forming the masks for all threads on each core.
2752  // Threads on the same core will have identical kmp_hw_thread_t objects, not
2753  // considering the last level, which must be the thread id. All threads on a
2754  // core will appear consecutively.
2755  int unique = 0;
2756  int j = 0; // index of 1st thread on core
2757  int leader = 0;
2758  kmp_affin_mask_t *sum;
2759  KMP_CPU_ALLOC_ON_STACK(sum);
2760  KMP_CPU_ZERO(sum);
2761  KMP_CPU_SET(__kmp_topology->at(0).os_id, sum);
2762  for (i = 1; i < numAddrs; i++) {
2763  // If this thread is sufficiently close to the leader (within the
2764  // granularity setting), then set the bit for this os thread in the
2765  // affinity mask for this group, and go on to the next thread.
2766  if (__kmp_topology->is_close(leader, i, __kmp_affinity_gran_levels)) {
2767  KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
2768  continue;
2769  }
2770 
2771  // For every thread in this group, copy the mask to the thread's entry in
2772  // the osId2Mask table. Mark the first address as a leader.
2773  for (; j < i; j++) {
2774  int osId = __kmp_topology->at(j).os_id;
2775  KMP_DEBUG_ASSERT(osId <= maxOsId);
2776  kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2777  KMP_CPU_COPY(mask, sum);
2778  __kmp_topology->at(j).leader = (j == leader);
2779  }
2780  unique++;
2781 
2782  // Start a new mask.
2783  leader = i;
2784  KMP_CPU_ZERO(sum);
2785  KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
2786  }
2787 
2788  // For every thread in last group, copy the mask to the thread's
2789  // entry in the osId2Mask table.
2790  for (; j < i; j++) {
2791  int osId = __kmp_topology->at(j).os_id;
2792  KMP_DEBUG_ASSERT(osId <= maxOsId);
2793  kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2794  KMP_CPU_COPY(mask, sum);
2795  __kmp_topology->at(j).leader = (j == leader);
2796  }
2797  unique++;
2798  KMP_CPU_FREE_FROM_STACK(sum);
2799 
2800  *maxIndex = maxOsId;
2801  *numUnique = unique;
2802  return osId2Mask;
2803 }
2804 
2805 // Stuff for the affinity proclist parsers. It's easier to declare these vars
2806 // as file-static than to try and pass them through the calling sequence of
2807 // the recursive-descent OMP_PLACES parser.
2808 static kmp_affin_mask_t *newMasks;
2809 static int numNewMasks;
2810 static int nextNewMask;
2811 
2812 #define ADD_MASK(_mask) \
2813  { \
2814  if (nextNewMask >= numNewMasks) { \
2815  int i; \
2816  numNewMasks *= 2; \
2817  kmp_affin_mask_t *temp; \
2818  KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \
2819  for (i = 0; i < numNewMasks / 2; i++) { \
2820  kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \
2821  kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \
2822  KMP_CPU_COPY(dest, src); \
2823  } \
2824  KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \
2825  newMasks = temp; \
2826  } \
2827  KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
2828  nextNewMask++; \
2829  }
2830 
2831 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \
2832  { \
2833  if (((_osId) > _maxOsId) || \
2834  (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
2835  if (__kmp_affinity_verbose || \
2836  (__kmp_affinity_warnings && \
2837  (__kmp_affinity_type != affinity_none))) { \
2838  KMP_WARNING(AffIgnoreInvalidProcID, _osId); \
2839  } \
2840  } else { \
2841  ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
2842  } \
2843  }
2844 
2845 // Re-parse the proclist (for the explicit affinity type), and form the list
2846 // of affinity newMasks indexed by gtid.
2847 static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
2848  unsigned int *out_numMasks,
2849  const char *proclist,
2850  kmp_affin_mask_t *osId2Mask,
2851  int maxOsId) {
2852  int i;
2853  const char *scan = proclist;
2854  const char *next = proclist;
2855 
2856  // We use malloc() for the temporary mask vector, so that we can use
2857  // realloc() to extend it.
2858  numNewMasks = 2;
2859  KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
2860  nextNewMask = 0;
2861  kmp_affin_mask_t *sumMask;
2862  KMP_CPU_ALLOC(sumMask);
2863  int setSize = 0;
2864 
2865  for (;;) {
2866  int start, end, stride;
2867 
2868  SKIP_WS(scan);
2869  next = scan;
2870  if (*next == '\0') {
2871  break;
2872  }
2873 
2874  if (*next == '{') {
2875  int num;
2876  setSize = 0;
2877  next++; // skip '{'
2878  SKIP_WS(next);
2879  scan = next;
2880 
2881  // Read the first integer in the set.
2882  KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
2883  SKIP_DIGITS(next);
2884  num = __kmp_str_to_int(scan, *next);
2885  KMP_ASSERT2(num >= 0, "bad explicit proc list");
2886 
2887  // Copy the mask for that osId to the sum (union) mask.
2888  if ((num > maxOsId) ||
2889  (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2890  if (__kmp_affinity_verbose ||
2891  (__kmp_affinity_warnings &&
2892  (__kmp_affinity_type != affinity_none))) {
2893  KMP_WARNING(AffIgnoreInvalidProcID, num);
2894  }
2895  KMP_CPU_ZERO(sumMask);
2896  } else {
2897  KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2898  setSize = 1;
2899  }
2900 
2901  for (;;) {
2902  // Check for end of set.
2903  SKIP_WS(next);
2904  if (*next == '}') {
2905  next++; // skip '}'
2906  break;
2907  }
2908 
2909  // Skip optional comma.
2910  if (*next == ',') {
2911  next++;
2912  }
2913  SKIP_WS(next);
2914 
2915  // Read the next integer in the set.
2916  scan = next;
2917  KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2918 
2919  SKIP_DIGITS(next);
2920  num = __kmp_str_to_int(scan, *next);
2921  KMP_ASSERT2(num >= 0, "bad explicit proc list");
2922 
2923  // Add the mask for that osId to the sum mask.
2924  if ((num > maxOsId) ||
2925  (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2926  if (__kmp_affinity_verbose ||
2927  (__kmp_affinity_warnings &&
2928  (__kmp_affinity_type != affinity_none))) {
2929  KMP_WARNING(AffIgnoreInvalidProcID, num);
2930  }
2931  } else {
2932  KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2933  setSize++;
2934  }
2935  }
2936  if (setSize > 0) {
2937  ADD_MASK(sumMask);
2938  }
2939 
2940  SKIP_WS(next);
2941  if (*next == ',') {
2942  next++;
2943  }
2944  scan = next;
2945  continue;
2946  }
2947 
2948  // Read the first integer.
2949  KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2950  SKIP_DIGITS(next);
2951  start = __kmp_str_to_int(scan, *next);
2952  KMP_ASSERT2(start >= 0, "bad explicit proc list");
2953  SKIP_WS(next);
2954 
2955  // If this isn't a range, then add a mask to the list and go on.
2956  if (*next != '-') {
2957  ADD_MASK_OSID(start, osId2Mask, maxOsId);
2958 
2959  // Skip optional comma.
2960  if (*next == ',') {
2961  next++;
2962  }
2963  scan = next;
2964  continue;
2965  }
2966 
2967  // This is a range. Skip over the '-' and read in the 2nd int.
2968  next++; // skip '-'
2969  SKIP_WS(next);
2970  scan = next;
2971  KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2972  SKIP_DIGITS(next);
2973  end = __kmp_str_to_int(scan, *next);
2974  KMP_ASSERT2(end >= 0, "bad explicit proc list");
2975 
2976  // Check for a stride parameter
2977  stride = 1;
2978  SKIP_WS(next);
2979  if (*next == ':') {
2980  // A stride is specified. Skip over the ':" and read the 3rd int.
2981  int sign = +1;
2982  next++; // skip ':'
2983  SKIP_WS(next);
2984  scan = next;
2985  if (*next == '-') {
2986  sign = -1;
2987  next++;
2988  SKIP_WS(next);
2989  scan = next;
2990  }
2991  KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2992  SKIP_DIGITS(next);
2993  stride = __kmp_str_to_int(scan, *next);
2994  KMP_ASSERT2(stride >= 0, "bad explicit proc list");
2995  stride *= sign;
2996  }
2997 
2998  // Do some range checks.
2999  KMP_ASSERT2(stride != 0, "bad explicit proc list");
3000  if (stride > 0) {
3001  KMP_ASSERT2(start <= end, "bad explicit proc list");
3002  } else {
3003  KMP_ASSERT2(start >= end, "bad explicit proc list");
3004  }
3005  KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
3006 
3007  // Add the mask for each OS proc # to the list.
3008  if (stride > 0) {
3009  do {
3010  ADD_MASK_OSID(start, osId2Mask, maxOsId);
3011  start += stride;
3012  } while (start <= end);
3013  } else {
3014  do {
3015  ADD_MASK_OSID(start, osId2Mask, maxOsId);
3016  start += stride;
3017  } while (start >= end);
3018  }
3019 
3020  // Skip optional comma.
3021  SKIP_WS(next);
3022  if (*next == ',') {
3023  next++;
3024  }
3025  scan = next;
3026  }
3027 
3028  *out_numMasks = nextNewMask;
3029  if (nextNewMask == 0) {
3030  *out_masks = NULL;
3031  KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3032  return;
3033  }
3034  KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3035  for (i = 0; i < nextNewMask; i++) {
3036  kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3037  kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3038  KMP_CPU_COPY(dest, src);
3039  }
3040  KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3041  KMP_CPU_FREE(sumMask);
3042 }
3043 
3044 /*-----------------------------------------------------------------------------
3045 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
3046 places. Again, Here is the grammar:
3047 
3048 place_list := place
3049 place_list := place , place_list
3050 place := num
3051 place := place : num
3052 place := place : num : signed
3053 place := { subplacelist }
3054 place := ! place // (lowest priority)
3055 subplace_list := subplace
3056 subplace_list := subplace , subplace_list
3057 subplace := num
3058 subplace := num : num
3059 subplace := num : num : signed
3060 signed := num
3061 signed := + signed
3062 signed := - signed
3063 -----------------------------------------------------------------------------*/
3064 static void __kmp_process_subplace_list(const char **scan,
3065  kmp_affin_mask_t *osId2Mask,
3066  int maxOsId, kmp_affin_mask_t *tempMask,
3067  int *setSize) {
3068  const char *next;
3069 
3070  for (;;) {
3071  int start, count, stride, i;
3072 
3073  // Read in the starting proc id
3074  SKIP_WS(*scan);
3075  KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3076  next = *scan;
3077  SKIP_DIGITS(next);
3078  start = __kmp_str_to_int(*scan, *next);
3079  KMP_ASSERT(start >= 0);
3080  *scan = next;
3081 
3082  // valid follow sets are ',' ':' and '}'
3083  SKIP_WS(*scan);
3084  if (**scan == '}' || **scan == ',') {
3085  if ((start > maxOsId) ||
3086  (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3087  if (__kmp_affinity_verbose ||
3088  (__kmp_affinity_warnings &&
3089  (__kmp_affinity_type != affinity_none))) {
3090  KMP_WARNING(AffIgnoreInvalidProcID, start);
3091  }
3092  } else {
3093  KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3094  (*setSize)++;
3095  }
3096  if (**scan == '}') {
3097  break;
3098  }
3099  (*scan)++; // skip ','
3100  continue;
3101  }
3102  KMP_ASSERT2(**scan == ':', "bad explicit places list");
3103  (*scan)++; // skip ':'
3104 
3105  // Read count parameter
3106  SKIP_WS(*scan);
3107  KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3108  next = *scan;
3109  SKIP_DIGITS(next);
3110  count = __kmp_str_to_int(*scan, *next);
3111  KMP_ASSERT(count >= 0);
3112  *scan = next;
3113 
3114  // valid follow sets are ',' ':' and '}'
3115  SKIP_WS(*scan);
3116  if (**scan == '}' || **scan == ',') {
3117  for (i = 0; i < count; i++) {
3118  if ((start > maxOsId) ||
3119  (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3120  if (__kmp_affinity_verbose ||
3121  (__kmp_affinity_warnings &&
3122  (__kmp_affinity_type != affinity_none))) {
3123  KMP_WARNING(AffIgnoreInvalidProcID, start);
3124  }
3125  break; // don't proliferate warnings for large count
3126  } else {
3127  KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3128  start++;
3129  (*setSize)++;
3130  }
3131  }
3132  if (**scan == '}') {
3133  break;
3134  }
3135  (*scan)++; // skip ','
3136  continue;
3137  }
3138  KMP_ASSERT2(**scan == ':', "bad explicit places list");
3139  (*scan)++; // skip ':'
3140 
3141  // Read stride parameter
3142  int sign = +1;
3143  for (;;) {
3144  SKIP_WS(*scan);
3145  if (**scan == '+') {
3146  (*scan)++; // skip '+'
3147  continue;
3148  }
3149  if (**scan == '-') {
3150  sign *= -1;
3151  (*scan)++; // skip '-'
3152  continue;
3153  }
3154  break;
3155  }
3156  SKIP_WS(*scan);
3157  KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3158  next = *scan;
3159  SKIP_DIGITS(next);
3160  stride = __kmp_str_to_int(*scan, *next);
3161  KMP_ASSERT(stride >= 0);
3162  *scan = next;
3163  stride *= sign;
3164 
3165  // valid follow sets are ',' and '}'
3166  SKIP_WS(*scan);
3167  if (**scan == '}' || **scan == ',') {
3168  for (i = 0; i < count; i++) {
3169  if ((start > maxOsId) ||
3170  (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3171  if (__kmp_affinity_verbose ||
3172  (__kmp_affinity_warnings &&
3173  (__kmp_affinity_type != affinity_none))) {
3174  KMP_WARNING(AffIgnoreInvalidProcID, start);
3175  }
3176  break; // don't proliferate warnings for large count
3177  } else {
3178  KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3179  start += stride;
3180  (*setSize)++;
3181  }
3182  }
3183  if (**scan == '}') {
3184  break;
3185  }
3186  (*scan)++; // skip ','
3187  continue;
3188  }
3189 
3190  KMP_ASSERT2(0, "bad explicit places list");
3191  }
3192 }
3193 
3194 static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
3195  int maxOsId, kmp_affin_mask_t *tempMask,
3196  int *setSize) {
3197  const char *next;
3198 
3199  // valid follow sets are '{' '!' and num
3200  SKIP_WS(*scan);
3201  if (**scan == '{') {
3202  (*scan)++; // skip '{'
3203  __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize);
3204  KMP_ASSERT2(**scan == '}', "bad explicit places list");
3205  (*scan)++; // skip '}'
3206  } else if (**scan == '!') {
3207  (*scan)++; // skip '!'
3208  __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
3209  KMP_CPU_COMPLEMENT(maxOsId, tempMask);
3210  } else if ((**scan >= '0') && (**scan <= '9')) {
3211  next = *scan;
3212  SKIP_DIGITS(next);
3213  int num = __kmp_str_to_int(*scan, *next);
3214  KMP_ASSERT(num >= 0);
3215  if ((num > maxOsId) ||
3216  (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3217  if (__kmp_affinity_verbose ||
3218  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
3219  KMP_WARNING(AffIgnoreInvalidProcID, num);
3220  }
3221  } else {
3222  KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
3223  (*setSize)++;
3224  }
3225  *scan = next; // skip num
3226  } else {
3227  KMP_ASSERT2(0, "bad explicit places list");
3228  }
3229 }
3230 
3231 // static void
3232 void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
3233  unsigned int *out_numMasks,
3234  const char *placelist,
3235  kmp_affin_mask_t *osId2Mask,
3236  int maxOsId) {
3237  int i, j, count, stride, sign;
3238  const char *scan = placelist;
3239  const char *next = placelist;
3240 
3241  numNewMasks = 2;
3242  KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
3243  nextNewMask = 0;
3244 
3245  // tempMask is modified based on the previous or initial
3246  // place to form the current place
3247  // previousMask contains the previous place
3248  kmp_affin_mask_t *tempMask;
3249  kmp_affin_mask_t *previousMask;
3250  KMP_CPU_ALLOC(tempMask);
3251  KMP_CPU_ZERO(tempMask);
3252  KMP_CPU_ALLOC(previousMask);
3253  KMP_CPU_ZERO(previousMask);
3254  int setSize = 0;
3255 
3256  for (;;) {
3257  __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
3258 
3259  // valid follow sets are ',' ':' and EOL
3260  SKIP_WS(scan);
3261  if (*scan == '\0' || *scan == ',') {
3262  if (setSize > 0) {
3263  ADD_MASK(tempMask);
3264  }
3265  KMP_CPU_ZERO(tempMask);
3266  setSize = 0;
3267  if (*scan == '\0') {
3268  break;
3269  }
3270  scan++; // skip ','
3271  continue;
3272  }
3273 
3274  KMP_ASSERT2(*scan == ':', "bad explicit places list");
3275  scan++; // skip ':'
3276 
3277  // Read count parameter
3278  SKIP_WS(scan);
3279  KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3280  next = scan;
3281  SKIP_DIGITS(next);
3282  count = __kmp_str_to_int(scan, *next);
3283  KMP_ASSERT(count >= 0);
3284  scan = next;
3285 
3286  // valid follow sets are ',' ':' and EOL
3287  SKIP_WS(scan);
3288  if (*scan == '\0' || *scan == ',') {
3289  stride = +1;
3290  } else {
3291  KMP_ASSERT2(*scan == ':', "bad explicit places list");
3292  scan++; // skip ':'
3293 
3294  // Read stride parameter
3295  sign = +1;
3296  for (;;) {
3297  SKIP_WS(scan);
3298  if (*scan == '+') {
3299  scan++; // skip '+'
3300  continue;
3301  }
3302  if (*scan == '-') {
3303  sign *= -1;
3304  scan++; // skip '-'
3305  continue;
3306  }
3307  break;
3308  }
3309  SKIP_WS(scan);
3310  KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3311  next = scan;
3312  SKIP_DIGITS(next);
3313  stride = __kmp_str_to_int(scan, *next);
3314  KMP_DEBUG_ASSERT(stride >= 0);
3315  scan = next;
3316  stride *= sign;
3317  }
3318 
3319  // Add places determined by initial_place : count : stride
3320  for (i = 0; i < count; i++) {
3321  if (setSize == 0) {
3322  break;
3323  }
3324  // Add the current place, then build the next place (tempMask) from that
3325  KMP_CPU_COPY(previousMask, tempMask);
3326  ADD_MASK(previousMask);
3327  KMP_CPU_ZERO(tempMask);
3328  setSize = 0;
3329  KMP_CPU_SET_ITERATE(j, previousMask) {
3330  if (!KMP_CPU_ISSET(j, previousMask)) {
3331  continue;
3332  }
3333  if ((j + stride > maxOsId) || (j + stride < 0) ||
3334  (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
3335  (!KMP_CPU_ISSET(j + stride,
3336  KMP_CPU_INDEX(osId2Mask, j + stride)))) {
3337  if ((__kmp_affinity_verbose ||
3338  (__kmp_affinity_warnings &&
3339  (__kmp_affinity_type != affinity_none))) &&
3340  i < count - 1) {
3341  KMP_WARNING(AffIgnoreInvalidProcID, j + stride);
3342  }
3343  continue;
3344  }
3345  KMP_CPU_SET(j + stride, tempMask);
3346  setSize++;
3347  }
3348  }
3349  KMP_CPU_ZERO(tempMask);
3350  setSize = 0;
3351 
3352  // valid follow sets are ',' and EOL
3353  SKIP_WS(scan);
3354  if (*scan == '\0') {
3355  break;
3356  }
3357  if (*scan == ',') {
3358  scan++; // skip ','
3359  continue;
3360  }
3361 
3362  KMP_ASSERT2(0, "bad explicit places list");
3363  }
3364 
3365  *out_numMasks = nextNewMask;
3366  if (nextNewMask == 0) {
3367  *out_masks = NULL;
3368  KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3369  return;
3370  }
3371  KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3372  KMP_CPU_FREE(tempMask);
3373  KMP_CPU_FREE(previousMask);
3374  for (i = 0; i < nextNewMask; i++) {
3375  kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3376  kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3377  KMP_CPU_COPY(dest, src);
3378  }
3379  KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3380 }
3381 
3382 #undef ADD_MASK
3383 #undef ADD_MASK_OSID
3384 
3385 // This function figures out the deepest level at which there is at least one
3386 // cluster/core with more than one processing unit bound to it.
3387 static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) {
3388  int core_level = 0;
3389 
3390  for (int i = 0; i < nprocs; i++) {
3391  const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
3392  for (int j = bottom_level; j > 0; j--) {
3393  if (hw_thread.ids[j] > 0) {
3394  if (core_level < (j - 1)) {
3395  core_level = j - 1;
3396  }
3397  }
3398  }
3399  }
3400  return core_level;
3401 }
3402 
3403 // This function counts number of clusters/cores at given level.
3404 static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level,
3405  int core_level) {
3406  return __kmp_topology->get_count(core_level);
3407 }
3408 // This function finds to which cluster/core given processing unit is bound.
3409 static int __kmp_affinity_find_core(int proc, int bottom_level,
3410  int core_level) {
3411  int core = 0;
3412  KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads());
3413  for (int i = 0; i <= proc; ++i) {
3414  if (i + 1 <= proc) {
3415  for (int j = 0; j <= core_level; ++j) {
3416  if (__kmp_topology->at(i + 1).sub_ids[j] !=
3417  __kmp_topology->at(i).sub_ids[j]) {
3418  core++;
3419  break;
3420  }
3421  }
3422  }
3423  }
3424  return core;
3425 }
3426 
3427 // This function finds maximal number of processing units bound to a
3428 // cluster/core at given level.
3429 static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level,
3430  int core_level) {
3431  if (core_level >= bottom_level)
3432  return 1;
3433  int thread_level = __kmp_topology->get_level(KMP_HW_THREAD);
3434  return __kmp_topology->calculate_ratio(thread_level, core_level);
3435 }
3436 
3437 static int *procarr = NULL;
3438 static int __kmp_aff_depth = 0;
3439 
3440 // Create a one element mask array (set of places) which only contains the
3441 // initial process's affinity mask
3442 static void __kmp_create_affinity_none_places() {
3443  KMP_ASSERT(__kmp_affin_fullMask != NULL);
3444  KMP_ASSERT(__kmp_affinity_type == affinity_none);
3445  __kmp_affinity_num_masks = 1;
3446  KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
3447  kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0);
3448  KMP_CPU_COPY(dest, __kmp_affin_fullMask);
3449 }
3450 
3451 static void __kmp_aux_affinity_initialize(void) {
3452  if (__kmp_affinity_masks != NULL) {
3453  KMP_ASSERT(__kmp_affin_fullMask != NULL);
3454  return;
3455  }
3456 
3457  // Create the "full" mask - this defines all of the processors that we
3458  // consider to be in the machine model. If respect is set, then it is the
3459  // initialization thread's affinity mask. Otherwise, it is all processors that
3460  // we know about on the machine.
3461  if (__kmp_affin_fullMask == NULL) {
3462  KMP_CPU_ALLOC(__kmp_affin_fullMask);
3463  }
3464  if (KMP_AFFINITY_CAPABLE()) {
3465  __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
3466  if (__kmp_affinity_respect_mask) {
3467  // Count the number of available processors.
3468  unsigned i;
3469  __kmp_avail_proc = 0;
3470  KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
3471  if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
3472  continue;
3473  }
3474  __kmp_avail_proc++;
3475  }
3476  if (__kmp_avail_proc > __kmp_xproc) {
3477  if (__kmp_affinity_verbose ||
3478  (__kmp_affinity_warnings &&
3479  (__kmp_affinity_type != affinity_none))) {
3480  KMP_WARNING(ErrorInitializeAffinity);
3481  }
3482  __kmp_affinity_type = affinity_none;
3483  KMP_AFFINITY_DISABLE();
3484  return;
3485  }
3486 
3487  if (__kmp_affinity_verbose) {
3488  char buf[KMP_AFFIN_MASK_PRINT_LEN];
3489  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
3490  __kmp_affin_fullMask);
3491  KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
3492  }
3493  } else {
3494  if (__kmp_affinity_verbose) {
3495  char buf[KMP_AFFIN_MASK_PRINT_LEN];
3496  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
3497  __kmp_affin_fullMask);
3498  KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
3499  }
3500  __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
3501  __kmp_avail_proc = __kmp_xproc;
3502 #if KMP_OS_WINDOWS
3503  // Set the process affinity mask since threads' affinity
3504  // masks must be subset of process mask in Windows* OS
3505  __kmp_affin_fullMask->set_process_affinity(true);
3506 #endif
3507  }
3508  }
3509 
3510  kmp_i18n_id_t msg_id = kmp_i18n_null;
3511 
3512  // For backward compatibility, setting KMP_CPUINFO_FILE =>
3513  // KMP_TOPOLOGY_METHOD=cpuinfo
3514  if ((__kmp_cpuinfo_file != NULL) &&
3515  (__kmp_affinity_top_method == affinity_top_method_all)) {
3516  __kmp_affinity_top_method = affinity_top_method_cpuinfo;
3517  }
3518 
3519  bool success = false;
3520  if (__kmp_affinity_top_method == affinity_top_method_all) {
3521 // In the default code path, errors are not fatal - we just try using
3522 // another method. We only emit a warning message if affinity is on, or the
3523 // verbose flag is set, an the nowarnings flag was not set.
3524 #if KMP_USE_HWLOC
3525  if (!success &&
3526  __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
3527  if (!__kmp_hwloc_error) {
3528  success = __kmp_affinity_create_hwloc_map(&msg_id);
3529  if (!success && __kmp_affinity_verbose) {
3530  KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
3531  }
3532  } else if (__kmp_affinity_verbose) {
3533  KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
3534  }
3535  }
3536 #endif
3537 
3538 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3539  if (!success) {
3540  success = __kmp_affinity_create_x2apicid_map(&msg_id);
3541  if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
3542  KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
3543  }
3544  }
3545  if (!success) {
3546  success = __kmp_affinity_create_apicid_map(&msg_id);
3547  if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
3548  KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
3549  }
3550  }
3551 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3552 
3553 #if KMP_OS_LINUX
3554  if (!success) {
3555  int line = 0;
3556  success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
3557  if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
3558  KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
3559  }
3560  }
3561 #endif /* KMP_OS_LINUX */
3562 
3563 #if KMP_GROUP_AFFINITY
3564  if (!success && (__kmp_num_proc_groups > 1)) {
3565  success = __kmp_affinity_create_proc_group_map(&msg_id);
3566  if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
3567  KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
3568  }
3569  }
3570 #endif /* KMP_GROUP_AFFINITY */
3571 
3572  if (!success) {
3573  success = __kmp_affinity_create_flat_map(&msg_id);
3574  if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
3575  KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
3576  }
3577  KMP_ASSERT(success);
3578  }
3579  }
3580 
3581 // If the user has specified that a paricular topology discovery method is to be
3582 // used, then we abort if that method fails. The exception is group affinity,
3583 // which might have been implicitly set.
3584 #if KMP_USE_HWLOC
3585  else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
3586  KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
3587  success = __kmp_affinity_create_hwloc_map(&msg_id);
3588  if (!success) {
3589  KMP_ASSERT(msg_id != kmp_i18n_null);
3590  KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
3591  }
3592  }
3593 #endif // KMP_USE_HWLOC
3594 
3595 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3596  else if (__kmp_affinity_top_method == affinity_top_method_x2apicid ||
3597  __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
3598  success = __kmp_affinity_create_x2apicid_map(&msg_id);
3599  if (!success) {
3600  KMP_ASSERT(msg_id != kmp_i18n_null);
3601  KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
3602  }
3603  } else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
3604  success = __kmp_affinity_create_apicid_map(&msg_id);
3605  if (!success) {
3606  KMP_ASSERT(msg_id != kmp_i18n_null);
3607  KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
3608  }
3609  }
3610 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3611 
3612  else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
3613  int line = 0;
3614  success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
3615  if (!success) {
3616  KMP_ASSERT(msg_id != kmp_i18n_null);
3617  const char *filename = __kmp_cpuinfo_get_filename();
3618  if (line > 0) {
3619  KMP_FATAL(FileLineMsgExiting, filename, line,
3620  __kmp_i18n_catgets(msg_id));
3621  } else {
3622  KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
3623  }
3624  }
3625  }
3626 
3627 #if KMP_GROUP_AFFINITY
3628  else if (__kmp_affinity_top_method == affinity_top_method_group) {
3629  success = __kmp_affinity_create_proc_group_map(&msg_id);
3630  KMP_ASSERT(success);
3631  if (!success) {
3632  KMP_ASSERT(msg_id != kmp_i18n_null);
3633  KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
3634  }
3635  }
3636 #endif /* KMP_GROUP_AFFINITY */
3637 
3638  else if (__kmp_affinity_top_method == affinity_top_method_flat) {
3639  success = __kmp_affinity_create_flat_map(&msg_id);
3640  // should not fail
3641  KMP_ASSERT(success);
3642  }
3643 
3644  // Early exit if topology could not be created
3645  if (!__kmp_topology) {
3646  if (KMP_AFFINITY_CAPABLE() &&
3647  (__kmp_affinity_verbose ||
3648  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) {
3649  KMP_WARNING(ErrorInitializeAffinity);
3650  }
3651  if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 &&
3652  __kmp_ncores > 0) {
3653  __kmp_topology = kmp_topology_t::allocate(0, 0, NULL);
3654  __kmp_topology->canonicalize(nPackages, nCoresPerPkg,
3655  __kmp_nThreadsPerCore, __kmp_ncores);
3656  if (__kmp_affinity_verbose) {
3657  __kmp_topology->print("KMP_AFFINITY");
3658  }
3659  }
3660  __kmp_affinity_type = affinity_none;
3661  __kmp_create_affinity_none_places();
3662 #if KMP_USE_HIER_SCHED
3663  __kmp_dispatch_set_hierarchy_values();
3664 #endif
3665  KMP_AFFINITY_DISABLE();
3666  return;
3667  }
3668 
3669  // Canonicalize, print (if requested), apply KMP_HW_SUBSET, and
3670  // initialize other data structures which depend on the topology
3671  __kmp_topology->canonicalize();
3672  if (__kmp_affinity_verbose)
3673  __kmp_topology->print("KMP_AFFINITY");
3674  bool filtered = __kmp_topology->filter_hw_subset();
3675  if (filtered && __kmp_affinity_verbose)
3676  __kmp_topology->print("KMP_HW_SUBSET");
3677  machine_hierarchy.init(__kmp_topology->get_num_hw_threads());
3678  KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads());
3679  // If KMP_AFFINITY=none, then only create the single "none" place
3680  // which is the process's initial affinity mask or the number of
3681  // hardware threads depending on respect,norespect
3682  if (__kmp_affinity_type == affinity_none) {
3683  __kmp_create_affinity_none_places();
3684 #if KMP_USE_HIER_SCHED
3685  __kmp_dispatch_set_hierarchy_values();
3686 #endif
3687  return;
3688  }
3689  int depth = __kmp_topology->get_depth();
3690 
3691  // Create the table of masks, indexed by thread Id.
3692  unsigned maxIndex;
3693  unsigned numUnique;
3694  kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique);
3695  if (__kmp_affinity_gran_levels == 0) {
3696  KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
3697  }
3698 
3699  switch (__kmp_affinity_type) {
3700 
3701  case affinity_explicit:
3702  KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
3703  if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) {
3704  __kmp_affinity_process_proclist(
3705  &__kmp_affinity_masks, &__kmp_affinity_num_masks,
3706  __kmp_affinity_proclist, osId2Mask, maxIndex);
3707  } else {
3708  __kmp_affinity_process_placelist(
3709  &__kmp_affinity_masks, &__kmp_affinity_num_masks,
3710  __kmp_affinity_proclist, osId2Mask, maxIndex);
3711  }
3712  if (__kmp_affinity_num_masks == 0) {
3713  if (__kmp_affinity_verbose ||
3714  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
3715  KMP_WARNING(AffNoValidProcID);
3716  }
3717  __kmp_affinity_type = affinity_none;
3718  __kmp_create_affinity_none_places();
3719  return;
3720  }
3721  break;
3722 
3723  // The other affinity types rely on sorting the hardware threads according to
3724  // some permutation of the machine topology tree. Set __kmp_affinity_compact
3725  // and __kmp_affinity_offset appropriately, then jump to a common code
3726  // fragment to do the sort and create the array of affinity masks.
3727  case affinity_logical:
3728  __kmp_affinity_compact = 0;
3729  if (__kmp_affinity_offset) {
3730  __kmp_affinity_offset =
3731  __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
3732  }
3733  goto sortTopology;
3734 
3735  case affinity_physical:
3736  if (__kmp_nThreadsPerCore > 1) {
3737  __kmp_affinity_compact = 1;
3738  if (__kmp_affinity_compact >= depth) {
3739  __kmp_affinity_compact = 0;
3740  }
3741  } else {
3742  __kmp_affinity_compact = 0;
3743  }
3744  if (__kmp_affinity_offset) {
3745  __kmp_affinity_offset =
3746  __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
3747  }
3748  goto sortTopology;
3749 
3750  case affinity_scatter:
3751  if (__kmp_affinity_compact >= depth) {
3752  __kmp_affinity_compact = 0;
3753  } else {
3754  __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
3755  }
3756  goto sortTopology;
3757 
3758  case affinity_compact:
3759  if (__kmp_affinity_compact >= depth) {
3760  __kmp_affinity_compact = depth - 1;
3761  }
3762  goto sortTopology;
3763 
3764  case affinity_balanced:
3765  if (depth <= 1) {
3766  if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
3767  KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
3768  }
3769  __kmp_affinity_type = affinity_none;
3770  __kmp_create_affinity_none_places();
3771  return;
3772  } else if (!__kmp_topology->is_uniform()) {
3773  // Save the depth for further usage
3774  __kmp_aff_depth = depth;
3775 
3776  int core_level =
3777  __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1);
3778  int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1,
3779  core_level);
3780  int maxprocpercore = __kmp_affinity_max_proc_per_core(
3781  __kmp_avail_proc, depth - 1, core_level);
3782 
3783  int nproc = ncores * maxprocpercore;
3784  if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
3785  if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
3786  KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
3787  }
3788  __kmp_affinity_type = affinity_none;
3789  return;
3790  }
3791 
3792  procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
3793  for (int i = 0; i < nproc; i++) {
3794  procarr[i] = -1;
3795  }
3796 
3797  int lastcore = -1;
3798  int inlastcore = 0;
3799  for (int i = 0; i < __kmp_avail_proc; i++) {
3800  int proc = __kmp_topology->at(i).os_id;
3801  int core = __kmp_affinity_find_core(i, depth - 1, core_level);
3802 
3803  if (core == lastcore) {
3804  inlastcore++;
3805  } else {
3806  inlastcore = 0;
3807  }
3808  lastcore = core;
3809 
3810  procarr[core * maxprocpercore + inlastcore] = proc;
3811  }
3812  }
3813  if (__kmp_affinity_compact >= depth) {
3814  __kmp_affinity_compact = depth - 1;
3815  }
3816 
3817  sortTopology:
3818  // Allocate the gtid->affinity mask table.
3819  if (__kmp_affinity_dups) {
3820  __kmp_affinity_num_masks = __kmp_avail_proc;
3821  } else {
3822  __kmp_affinity_num_masks = numUnique;
3823  }
3824 
3825  if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
3826  (__kmp_affinity_num_places > 0) &&
3827  ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) {
3828  __kmp_affinity_num_masks = __kmp_affinity_num_places;
3829  }
3830 
3831  KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
3832 
3833  // Sort the topology table according to the current setting of
3834  // __kmp_affinity_compact, then fill out __kmp_affinity_masks.
3835  __kmp_topology->sort_compact();
3836  {
3837  int i;
3838  unsigned j;
3839  int num_hw_threads = __kmp_topology->get_num_hw_threads();
3840  for (i = 0, j = 0; i < num_hw_threads; i++) {
3841  if ((!__kmp_affinity_dups) && (!__kmp_topology->at(i).leader)) {
3842  continue;
3843  }
3844  int osId = __kmp_topology->at(i).os_id;
3845 
3846  kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
3847  kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j);
3848  KMP_ASSERT(KMP_CPU_ISSET(osId, src));
3849  KMP_CPU_COPY(dest, src);
3850  if (++j >= __kmp_affinity_num_masks) {
3851  break;
3852  }
3853  }
3854  KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
3855  }
3856  // Sort the topology back using ids
3857  __kmp_topology->sort_ids();
3858  break;
3859 
3860  default:
3861  KMP_ASSERT2(0, "Unexpected affinity setting");
3862  }
3863 
3864  KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1);
3865 }
3866 
3867 void __kmp_affinity_initialize(void) {
3868  // Much of the code above was written assuming that if a machine was not
3869  // affinity capable, then __kmp_affinity_type == affinity_none. We now
3870  // explicitly represent this as __kmp_affinity_type == affinity_disabled.
3871  // There are too many checks for __kmp_affinity_type == affinity_none
3872  // in this code. Instead of trying to change them all, check if
3873  // __kmp_affinity_type == affinity_disabled, and if so, slam it with
3874  // affinity_none, call the real initialization routine, then restore
3875  // __kmp_affinity_type to affinity_disabled.
3876  int disabled = (__kmp_affinity_type == affinity_disabled);
3877  if (!KMP_AFFINITY_CAPABLE()) {
3878  KMP_ASSERT(disabled);
3879  }
3880  if (disabled) {
3881  __kmp_affinity_type = affinity_none;
3882  }
3883  __kmp_aux_affinity_initialize();
3884  if (disabled) {
3885  __kmp_affinity_type = affinity_disabled;
3886  }
3887 }
3888 
3889 void __kmp_affinity_uninitialize(void) {
3890  if (__kmp_affinity_masks != NULL) {
3891  KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
3892  __kmp_affinity_masks = NULL;
3893  }
3894  if (__kmp_affin_fullMask != NULL) {
3895  KMP_CPU_FREE(__kmp_affin_fullMask);
3896  __kmp_affin_fullMask = NULL;
3897  }
3898  __kmp_affinity_num_masks = 0;
3899  __kmp_affinity_type = affinity_default;
3900  __kmp_affinity_num_places = 0;
3901  if (__kmp_affinity_proclist != NULL) {
3902  __kmp_free(__kmp_affinity_proclist);
3903  __kmp_affinity_proclist = NULL;
3904  }
3905  if (procarr != NULL) {
3906  __kmp_free(procarr);
3907  procarr = NULL;
3908  }
3909 #if KMP_USE_HWLOC
3910  if (__kmp_hwloc_topology != NULL) {
3911  hwloc_topology_destroy(__kmp_hwloc_topology);
3912  __kmp_hwloc_topology = NULL;
3913  }
3914 #endif
3915  if (__kmp_hw_subset) {
3916  kmp_hw_subset_t::deallocate(__kmp_hw_subset);
3917  __kmp_hw_subset = nullptr;
3918  }
3919  if (__kmp_topology) {
3920  kmp_topology_t::deallocate(__kmp_topology);
3921  __kmp_topology = nullptr;
3922  }
3923  KMPAffinity::destroy_api();
3924 }
3925 
3926 void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
3927  if (!KMP_AFFINITY_CAPABLE()) {
3928  return;
3929  }
3930 
3931  kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
3932  if (th->th.th_affin_mask == NULL) {
3933  KMP_CPU_ALLOC(th->th.th_affin_mask);
3934  } else {
3935  KMP_CPU_ZERO(th->th.th_affin_mask);
3936  }
3937 
3938  // Copy the thread mask to the kmp_info_t structure. If
3939  // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that
3940  // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set,
3941  // then the full mask is the same as the mask of the initialization thread.
3942  kmp_affin_mask_t *mask;
3943  int i;
3944 
3945  if (KMP_AFFINITY_NON_PROC_BIND) {
3946  if ((__kmp_affinity_type == affinity_none) ||
3947  (__kmp_affinity_type == affinity_balanced) ||
3948  KMP_HIDDEN_HELPER_THREAD(gtid)) {
3949 #if KMP_GROUP_AFFINITY
3950  if (__kmp_num_proc_groups > 1) {
3951  return;
3952  }
3953 #endif
3954  KMP_ASSERT(__kmp_affin_fullMask != NULL);
3955  i = 0;
3956  mask = __kmp_affin_fullMask;
3957  } else {
3958  int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid);
3959  KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
3960  i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks;
3961  mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
3962  }
3963  } else {
3964  if ((!isa_root) || KMP_HIDDEN_HELPER_THREAD(gtid) ||
3965  (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
3966 #if KMP_GROUP_AFFINITY
3967  if (__kmp_num_proc_groups > 1) {
3968  return;
3969  }
3970 #endif
3971  KMP_ASSERT(__kmp_affin_fullMask != NULL);
3972  i = KMP_PLACE_ALL;
3973  mask = __kmp_affin_fullMask;
3974  } else {
3975  // int i = some hash function or just a counter that doesn't
3976  // always start at 0. Use adjusted gtid for now.
3977  int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid);
3978  KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
3979  i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks;
3980  mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
3981  }
3982  }
3983 
3984  th->th.th_current_place = i;
3985  if (isa_root || KMP_HIDDEN_HELPER_THREAD(gtid)) {
3986  th->th.th_new_place = i;
3987  th->th.th_first_place = 0;
3988  th->th.th_last_place = __kmp_affinity_num_masks - 1;
3989  } else if (KMP_AFFINITY_NON_PROC_BIND) {
3990  // When using a Non-OMP_PROC_BIND affinity method,
3991  // set all threads' place-partition-var to the entire place list
3992  th->th.th_first_place = 0;
3993  th->th.th_last_place = __kmp_affinity_num_masks - 1;
3994  }
3995 
3996  if (i == KMP_PLACE_ALL) {
3997  KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
3998  gtid));
3999  } else {
4000  KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
4001  gtid, i));
4002  }
4003 
4004  KMP_CPU_COPY(th->th.th_affin_mask, mask);
4005 
4006  if (__kmp_affinity_verbose && !KMP_HIDDEN_HELPER_THREAD(gtid)
4007  /* to avoid duplicate printing (will be correctly printed on barrier) */
4008  && (__kmp_affinity_type == affinity_none ||
4009  (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) {
4010  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4011  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4012  th->th.th_affin_mask);
4013  KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4014  __kmp_gettid(), gtid, buf);
4015  }
4016 
4017 #if KMP_DEBUG
4018  // Hidden helper thread affinity only printed for debug builds
4019  if (__kmp_affinity_verbose && KMP_HIDDEN_HELPER_THREAD(gtid)) {
4020  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4021  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4022  th->th.th_affin_mask);
4023  KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY (hidden helper thread)",
4024  (kmp_int32)getpid(), __kmp_gettid(), gtid, buf);
4025  }
4026 #endif
4027 
4028 #if KMP_OS_WINDOWS
4029  // On Windows* OS, the process affinity mask might have changed. If the user
4030  // didn't request affinity and this call fails, just continue silently.
4031  // See CQ171393.
4032  if (__kmp_affinity_type == affinity_none) {
4033  __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
4034  } else
4035 #endif
4036  __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4037 }
4038 
4039 void __kmp_affinity_set_place(int gtid) {
4040  if (!KMP_AFFINITY_CAPABLE()) {
4041  return;
4042  }
4043 
4044  kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4045 
4046  KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current "
4047  "place = %d)\n",
4048  gtid, th->th.th_new_place, th->th.th_current_place));
4049 
4050  // Check that the new place is within this thread's partition.
4051  KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4052  KMP_ASSERT(th->th.th_new_place >= 0);
4053  KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
4054  if (th->th.th_first_place <= th->th.th_last_place) {
4055  KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
4056  (th->th.th_new_place <= th->th.th_last_place));
4057  } else {
4058  KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
4059  (th->th.th_new_place >= th->th.th_last_place));
4060  }
4061 
4062  // Copy the thread mask to the kmp_info_t structure,
4063  // and set this thread's affinity.
4064  kmp_affin_mask_t *mask =
4065  KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place);
4066  KMP_CPU_COPY(th->th.th_affin_mask, mask);
4067  th->th.th_current_place = th->th.th_new_place;
4068 
4069  if (__kmp_affinity_verbose) {
4070  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4071  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4072  th->th.th_affin_mask);
4073  KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
4074  __kmp_gettid(), gtid, buf);
4075  }
4076  __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4077 }
4078 
4079 int __kmp_aux_set_affinity(void **mask) {
4080  int gtid;
4081  kmp_info_t *th;
4082  int retval;
4083 
4084  if (!KMP_AFFINITY_CAPABLE()) {
4085  return -1;
4086  }
4087 
4088  gtid = __kmp_entry_gtid();
4089  KA_TRACE(
4090  1000, (""); {
4091  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4092  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4093  (kmp_affin_mask_t *)(*mask));
4094  __kmp_debug_printf(
4095  "kmp_set_affinity: setting affinity mask for thread %d = %s\n",
4096  gtid, buf);
4097  });
4098 
4099  if (__kmp_env_consistency_check) {
4100  if ((mask == NULL) || (*mask == NULL)) {
4101  KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4102  } else {
4103  unsigned proc;
4104  int num_procs = 0;
4105 
4106  KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
4107  if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4108  KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4109  }
4110  if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
4111  continue;
4112  }
4113  num_procs++;
4114  }
4115  if (num_procs == 0) {
4116  KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4117  }
4118 
4119 #if KMP_GROUP_AFFINITY
4120  if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
4121  KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4122  }
4123 #endif /* KMP_GROUP_AFFINITY */
4124  }
4125  }
4126 
4127  th = __kmp_threads[gtid];
4128  KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4129  retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4130  if (retval == 0) {
4131  KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
4132  }
4133 
4134  th->th.th_current_place = KMP_PLACE_UNDEFINED;
4135  th->th.th_new_place = KMP_PLACE_UNDEFINED;
4136  th->th.th_first_place = 0;
4137  th->th.th_last_place = __kmp_affinity_num_masks - 1;
4138 
4139  // Turn off 4.0 affinity for the current tread at this parallel level.
4140  th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
4141 
4142  return retval;
4143 }
4144 
4145 int __kmp_aux_get_affinity(void **mask) {
4146  int gtid;
4147  int retval;
4148  kmp_info_t *th;
4149 
4150  if (!KMP_AFFINITY_CAPABLE()) {
4151  return -1;
4152  }
4153 
4154  gtid = __kmp_entry_gtid();
4155  th = __kmp_threads[gtid];
4156  KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4157 
4158  KA_TRACE(
4159  1000, (""); {
4160  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4161  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4162  th->th.th_affin_mask);
4163  __kmp_printf(
4164  "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid,
4165  buf);
4166  });
4167 
4168  if (__kmp_env_consistency_check) {
4169  if ((mask == NULL) || (*mask == NULL)) {
4170  KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
4171  }
4172  }
4173 
4174 #if !KMP_OS_WINDOWS
4175 
4176  retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4177  KA_TRACE(
4178  1000, (""); {
4179  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4180  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4181  (kmp_affin_mask_t *)(*mask));
4182  __kmp_printf(
4183  "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid,
4184  buf);
4185  });
4186  return retval;
4187 
4188 #else
4189  (void)retval;
4190 
4191  KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
4192  return 0;
4193 
4194 #endif /* KMP_OS_WINDOWS */
4195 }
4196 
4197 int __kmp_aux_get_affinity_max_proc() {
4198  if (!KMP_AFFINITY_CAPABLE()) {
4199  return 0;
4200  }
4201 #if KMP_GROUP_AFFINITY
4202  if (__kmp_num_proc_groups > 1) {
4203  return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
4204  }
4205 #endif
4206  return __kmp_xproc;
4207 }
4208 
4209 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
4210  if (!KMP_AFFINITY_CAPABLE()) {
4211  return -1;
4212  }
4213 
4214  KA_TRACE(
4215  1000, (""); {
4216  int gtid = __kmp_entry_gtid();
4217  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4218  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4219  (kmp_affin_mask_t *)(*mask));
4220  __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
4221  "affinity mask for thread %d = %s\n",
4222  proc, gtid, buf);
4223  });
4224 
4225  if (__kmp_env_consistency_check) {
4226  if ((mask == NULL) || (*mask == NULL)) {
4227  KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
4228  }
4229  }
4230 
4231  if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4232  return -1;
4233  }
4234  if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4235  return -2;
4236  }
4237 
4238  KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
4239  return 0;
4240 }
4241 
4242 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
4243  if (!KMP_AFFINITY_CAPABLE()) {
4244  return -1;
4245  }
4246 
4247  KA_TRACE(
4248  1000, (""); {
4249  int gtid = __kmp_entry_gtid();
4250  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4251  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4252  (kmp_affin_mask_t *)(*mask));
4253  __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
4254  "affinity mask for thread %d = %s\n",
4255  proc, gtid, buf);
4256  });
4257 
4258  if (__kmp_env_consistency_check) {
4259  if ((mask == NULL) || (*mask == NULL)) {
4260  KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
4261  }
4262  }
4263 
4264  if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4265  return -1;
4266  }
4267  if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4268  return -2;
4269  }
4270 
4271  KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
4272  return 0;
4273 }
4274 
4275 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
4276  if (!KMP_AFFINITY_CAPABLE()) {
4277  return -1;
4278  }
4279 
4280  KA_TRACE(
4281  1000, (""); {
4282  int gtid = __kmp_entry_gtid();
4283  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4284  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4285  (kmp_affin_mask_t *)(*mask));
4286  __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
4287  "affinity mask for thread %d = %s\n",
4288  proc, gtid, buf);
4289  });
4290 
4291  if (__kmp_env_consistency_check) {
4292  if ((mask == NULL) || (*mask == NULL)) {
4293  KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
4294  }
4295  }
4296 
4297  if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4298  return -1;
4299  }
4300  if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4301  return 0;
4302  }
4303 
4304  return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
4305 }
4306 
4307 // Dynamic affinity settings - Affinity balanced
4308 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
4309  KMP_DEBUG_ASSERT(th);
4310  bool fine_gran = true;
4311  int tid = th->th.th_info.ds.ds_tid;
4312 
4313  // Do not perform balanced affinity for the hidden helper threads
4314  if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th)))
4315  return;
4316 
4317  switch (__kmp_affinity_gran) {
4318  case KMP_HW_THREAD:
4319  break;
4320  case KMP_HW_CORE:
4321  if (__kmp_nThreadsPerCore > 1) {
4322  fine_gran = false;
4323  }
4324  break;
4325  case KMP_HW_SOCKET:
4326  if (nCoresPerPkg > 1) {
4327  fine_gran = false;
4328  }
4329  break;
4330  default:
4331  fine_gran = false;
4332  }
4333 
4334  if (__kmp_topology->is_uniform()) {
4335  int coreID;
4336  int threadID;
4337  // Number of hyper threads per core in HT machine
4338  int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
4339  // Number of cores
4340  int ncores = __kmp_ncores;
4341  if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
4342  __kmp_nth_per_core = __kmp_avail_proc / nPackages;
4343  ncores = nPackages;
4344  }
4345  // How many threads will be bound to each core
4346  int chunk = nthreads / ncores;
4347  // How many cores will have an additional thread bound to it - "big cores"
4348  int big_cores = nthreads % ncores;
4349  // Number of threads on the big cores
4350  int big_nth = (chunk + 1) * big_cores;
4351  if (tid < big_nth) {
4352  coreID = tid / (chunk + 1);
4353  threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
4354  } else { // tid >= big_nth
4355  coreID = (tid - big_cores) / chunk;
4356  threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
4357  }
4358  KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
4359  "Illegal set affinity operation when not capable");
4360 
4361  kmp_affin_mask_t *mask = th->th.th_affin_mask;
4362  KMP_CPU_ZERO(mask);
4363 
4364  if (fine_gran) {
4365  int osID =
4366  __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id;
4367  KMP_CPU_SET(osID, mask);
4368  } else {
4369  for (int i = 0; i < __kmp_nth_per_core; i++) {
4370  int osID;
4371  osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id;
4372  KMP_CPU_SET(osID, mask);
4373  }
4374  }
4375  if (__kmp_affinity_verbose) {
4376  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4377  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
4378  KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4379  __kmp_gettid(), tid, buf);
4380  }
4381  __kmp_set_system_affinity(mask, TRUE);
4382  } else { // Non-uniform topology
4383 
4384  kmp_affin_mask_t *mask = th->th.th_affin_mask;
4385  KMP_CPU_ZERO(mask);
4386 
4387  int core_level =
4388  __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1);
4389  int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc,
4390  __kmp_aff_depth - 1, core_level);
4391  int nth_per_core = __kmp_affinity_max_proc_per_core(
4392  __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
4393 
4394  // For performance gain consider the special case nthreads ==
4395  // __kmp_avail_proc
4396  if (nthreads == __kmp_avail_proc) {
4397  if (fine_gran) {
4398  int osID = __kmp_topology->at(tid).os_id;
4399  KMP_CPU_SET(osID, mask);
4400  } else {
4401  int core =
4402  __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level);
4403  for (int i = 0; i < __kmp_avail_proc; i++) {
4404  int osID = __kmp_topology->at(i).os_id;
4405  if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) ==
4406  core) {
4407  KMP_CPU_SET(osID, mask);
4408  }
4409  }
4410  }
4411  } else if (nthreads <= ncores) {
4412 
4413  int core = 0;
4414  for (int i = 0; i < ncores; i++) {
4415  // Check if this core from procarr[] is in the mask
4416  int in_mask = 0;
4417  for (int j = 0; j < nth_per_core; j++) {
4418  if (procarr[i * nth_per_core + j] != -1) {
4419  in_mask = 1;
4420  break;
4421  }
4422  }
4423  if (in_mask) {
4424  if (tid == core) {
4425  for (int j = 0; j < nth_per_core; j++) {
4426  int osID = procarr[i * nth_per_core + j];
4427  if (osID != -1) {
4428  KMP_CPU_SET(osID, mask);
4429  // For fine granularity it is enough to set the first available
4430  // osID for this core
4431  if (fine_gran) {
4432  break;
4433  }
4434  }
4435  }
4436  break;
4437  } else {
4438  core++;
4439  }
4440  }
4441  }
4442  } else { // nthreads > ncores
4443  // Array to save the number of processors at each core
4444  int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
4445  // Array to save the number of cores with "x" available processors;
4446  int *ncores_with_x_procs =
4447  (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
4448  // Array to save the number of cores with # procs from x to nth_per_core
4449  int *ncores_with_x_to_max_procs =
4450  (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
4451 
4452  for (int i = 0; i <= nth_per_core; i++) {
4453  ncores_with_x_procs[i] = 0;
4454  ncores_with_x_to_max_procs[i] = 0;
4455  }
4456 
4457  for (int i = 0; i < ncores; i++) {
4458  int cnt = 0;
4459  for (int j = 0; j < nth_per_core; j++) {
4460  if (procarr[i * nth_per_core + j] != -1) {
4461  cnt++;
4462  }
4463  }
4464  nproc_at_core[i] = cnt;
4465  ncores_with_x_procs[cnt]++;
4466  }
4467 
4468  for (int i = 0; i <= nth_per_core; i++) {
4469  for (int j = i; j <= nth_per_core; j++) {
4470  ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
4471  }
4472  }
4473 
4474  // Max number of processors
4475  int nproc = nth_per_core * ncores;
4476  // An array to keep number of threads per each context
4477  int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
4478  for (int i = 0; i < nproc; i++) {
4479  newarr[i] = 0;
4480  }
4481 
4482  int nth = nthreads;
4483  int flag = 0;
4484  while (nth > 0) {
4485  for (int j = 1; j <= nth_per_core; j++) {
4486  int cnt = ncores_with_x_to_max_procs[j];
4487  for (int i = 0; i < ncores; i++) {
4488  // Skip the core with 0 processors
4489  if (nproc_at_core[i] == 0) {
4490  continue;
4491  }
4492  for (int k = 0; k < nth_per_core; k++) {
4493  if (procarr[i * nth_per_core + k] != -1) {
4494  if (newarr[i * nth_per_core + k] == 0) {
4495  newarr[i * nth_per_core + k] = 1;
4496  cnt--;
4497  nth--;
4498  break;
4499  } else {
4500  if (flag != 0) {
4501  newarr[i * nth_per_core + k]++;
4502  cnt--;
4503  nth--;
4504  break;
4505  }
4506  }
4507  }
4508  }
4509  if (cnt == 0 || nth == 0) {
4510  break;
4511  }
4512  }
4513  if (nth == 0) {
4514  break;
4515  }
4516  }
4517  flag = 1;
4518  }
4519  int sum = 0;
4520  for (int i = 0; i < nproc; i++) {
4521  sum += newarr[i];
4522  if (sum > tid) {
4523  if (fine_gran) {
4524  int osID = procarr[i];
4525  KMP_CPU_SET(osID, mask);
4526  } else {
4527  int coreID = i / nth_per_core;
4528  for (int ii = 0; ii < nth_per_core; ii++) {
4529  int osID = procarr[coreID * nth_per_core + ii];
4530  if (osID != -1) {
4531  KMP_CPU_SET(osID, mask);
4532  }
4533  }
4534  }
4535  break;
4536  }
4537  }
4538  __kmp_free(newarr);
4539  }
4540 
4541  if (__kmp_affinity_verbose) {
4542  char buf[KMP_AFFIN_MASK_PRINT_LEN];
4543  __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
4544  KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4545  __kmp_gettid(), tid, buf);
4546  }
4547  __kmp_set_system_affinity(mask, TRUE);
4548  }
4549 }
4550 
4551 #if KMP_OS_LINUX || KMP_OS_FREEBSD
4552 // We don't need this entry for Windows because
4553 // there is GetProcessAffinityMask() api
4554 //
4555 // The intended usage is indicated by these steps:
4556 // 1) The user gets the current affinity mask
4557 // 2) Then sets the affinity by calling this function
4558 // 3) Error check the return value
4559 // 4) Use non-OpenMP parallelization
4560 // 5) Reset the affinity to what was stored in step 1)
4561 #ifdef __cplusplus
4562 extern "C"
4563 #endif
4564  int
4565  kmp_set_thread_affinity_mask_initial()
4566 // the function returns 0 on success,
4567 // -1 if we cannot bind thread
4568 // >0 (errno) if an error happened during binding
4569 {
4570  int gtid = __kmp_get_gtid();
4571  if (gtid < 0) {
4572  // Do not touch non-omp threads
4573  KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
4574  "non-omp thread, returning\n"));
4575  return -1;
4576  }
4577  if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
4578  KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
4579  "affinity not initialized, returning\n"));
4580  return -1;
4581  }
4582  KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
4583  "set full mask for thread %d\n",
4584  gtid));
4585  KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
4586  return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
4587 }
4588 #endif
4589 
4590 #endif // KMP_AFFINITY_SUPPORTED