Class AbstractDifferentiableOptimizer
- java.lang.Object
-
- org.apache.commons.math3.optimization.direct.BaseAbstractMultivariateOptimizer<MultivariateDifferentiableFunction>
-
- org.apache.commons.math3.optimization.general.AbstractDifferentiableOptimizer
-
- All Implemented Interfaces:
BaseMultivariateOptimizer<MultivariateDifferentiableFunction>
,BaseOptimizer<PointValuePair>
@Deprecated public abstract class AbstractDifferentiableOptimizer extends BaseAbstractMultivariateOptimizer<MultivariateDifferentiableFunction>
Deprecated.As of 3.1 (to be removed in 4.0).Base class for implementing optimizers for multivariate scalar differentiable functions. It contains boiler-plate code for dealing with gradient evaluation.- Since:
- 3.1
-
-
Field Summary
-
Fields inherited from class org.apache.commons.math3.optimization.direct.BaseAbstractMultivariateOptimizer
evaluations
-
-
Constructor Summary
Constructors Modifier Constructor Description protected
AbstractDifferentiableOptimizer(ConvergenceChecker<PointValuePair> checker)
Deprecated.
-
Method Summary
All Methods Instance Methods Concrete Methods Deprecated Methods Modifier and Type Method Description protected double[]
computeObjectiveGradient(double[] evaluationPoint)
Deprecated.Compute the gradient vector.protected PointValuePair
optimizeInternal(int maxEval, MultivariateDifferentiableFunction f, GoalType goalType, double[] startPoint)
Deprecated.In 3.1.protected PointValuePair
optimizeInternal(int maxEval, MultivariateDifferentiableFunction f, GoalType goalType, OptimizationData... optData)
Deprecated.Optimize an objective function.-
Methods inherited from class org.apache.commons.math3.optimization.direct.BaseAbstractMultivariateOptimizer
computeObjectiveValue, doOptimize, getConvergenceChecker, getEvaluations, getGoalType, getLowerBound, getMaxEvaluations, getStartPoint, getUpperBound, optimize, optimize
-
-
-
-
Constructor Detail
-
AbstractDifferentiableOptimizer
protected AbstractDifferentiableOptimizer(ConvergenceChecker<PointValuePair> checker)
Deprecated.- Parameters:
checker
- Convergence checker.
-
-
Method Detail
-
computeObjectiveGradient
protected double[] computeObjectiveGradient(double[] evaluationPoint)
Deprecated.Compute the gradient vector.- Parameters:
evaluationPoint
- Point at which the gradient must be evaluated.- Returns:
- the gradient at the specified point.
-
optimizeInternal
@Deprecated protected PointValuePair optimizeInternal(int maxEval, MultivariateDifferentiableFunction f, GoalType goalType, double[] startPoint)
Deprecated.In 3.1. Please useoptimizeInternal(int,MultivariateDifferentiableFunction,GoalType,OptimizationData[])
instead.Optimize an objective function.- Overrides:
optimizeInternal
in classBaseAbstractMultivariateOptimizer<MultivariateDifferentiableFunction>
- Parameters:
maxEval
- Maximum number of function evaluations.f
- Objective function.goalType
- Type of optimization goal: eitherGoalType.MAXIMIZE
orGoalType.MINIMIZE
.startPoint
- Start point for optimization.- Returns:
- the point/value pair giving the optimal value for objective function.
-
optimizeInternal
protected PointValuePair optimizeInternal(int maxEval, MultivariateDifferentiableFunction f, GoalType goalType, OptimizationData... optData)
Deprecated.Optimize an objective function.- Overrides:
optimizeInternal
in classBaseAbstractMultivariateOptimizer<MultivariateDifferentiableFunction>
- Parameters:
maxEval
- Allowed number of evaluations of the objective function.f
- Objective function.goalType
- Optimization type.optData
- Optimization data. The following data will be looked for:- Returns:
- the point/value pair giving the optimal value of the objective function.
-
-